摘要
在线性约束下矩阵束最佳逼近问题中,对给定的条件做一改变,解决了一个矩阵束最佳逼近问题。设A、B、C都是m×n阶矩阵,当A和B满足同时奇异值分解(SSVD)时,解决了一个关于X,Y的矩阵方程AX+YB=C的反问题:即求X∈SRn×n,Y∈SRm×m,使得满足||AX+YB-C||F=min,得到了其Frobenius范数对称解。
An Optimal Opproximation of matrix-fibres under linear constrains was solved with the modifying of the condition. The inverse problem for matrix equation of X, Y,AX + YB = C(A,B and C are m × n matrixies)was solved , when A and B satisfied the samesingular value decomposition (SSVD). We sought the symmetric matrix X ∈ SRn ^n×n, Y ∈ SR^m×m, to satisfy ‖AX+YB-C‖ F = min ,and obtained the minimum-Frobenius-norm symmetric solution.
出处
《天津科技大学学报》
CAS
2006年第3期63-65,69,共4页
Journal of Tianjin University of Science & Technology
基金
天津科技大学自然科学基金资助项目(20050227)