期刊文献+

Exact Solutions of (2+1)-Dimensional Euler Equation Found by Weak Darboux Transformation 被引量:3

Exact Solutions of (2+1)-Dimensional Euler Equation Found by Weak Darboux Transformation
下载PDF
导出
摘要 The weak Darboux transformation of the (2+1) dimensional Euler equation is used to find its exact solutions. Starting from a constant velocity field solution, a set of quite general periodic wave solutions such as the Rossby waves can be simply obtained from the weak Darboux transformation with zero spectral parameters. The constant vorticity seed solution is utilized to generate Bessel waves. The weak Darboux transformation of the (2+1) dimensional Euler equation is used to find its exact solutions. Starting from a constant velocity field solution, a set of quite general periodic wave solutions such as the Rossby waves can be simply obtained from the weak Darboux transformation with zero spectral parameters. The constant vorticity seed solution is utilized to generate Bessel waves.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第10期2633-2636,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 90203001, 10475055 and 90503006.
关键词 NAVIER-STOKES DYNAMICS FLUID NAVIER-STOKES DYNAMICS FLUID
  • 相关文献

参考文献24

  • 1Chavanis P H and Sommeria J 1997 Phys. Rev. Lett. 783302
  • 2Chavanis P H 2000 Phys. Rev. Lett. 84 5512
  • 3Grasso D et al 2001 Phys. Rev. Lett. 86 5051
  • 4Bergmans J and Schep T J 2001 Phys. Rev. Lett. 87 195002
  • 5Marshall Jet al 1997 J. Geophys. Res. Oceans (C3) 1025753
  • 6Canuto V M and Dubovikov M S 2005 Ocean Modelling 81
  • 7Girard C, Benoit R, Desgagne M 2005 Monthly Weather Rev. 133 1463
  • 8Huang T S, Ho C W and Alexander C J 1998 J. Geophys.Res.: Planets (E9) 103 20267
  • 9Haldane F D M and Wu Y 1985 Phys. Rev. Lett. 55 2887
  • 10Xu C Met a12005 Phys. Rev. D 71 024030

同被引文献12

  • 1Majda A J,Bertozzi A L.Vorticity and incompressible flow[M].Cambridge,UK:Cambridge University Press,2002.
  • 2Constantin P,Nie Q,Schorghofer N.Nonsingular surfacequasi-geostrophic flow[J].Physics Letters A,1998,241(3):168-172.
  • 3Constantin P,Majda A J,Tabak E.Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar[J].Nonlinearity,1994,7(6):1495-1553.
  • 4Deng J,Hou T Y,Yu X,et al.Level set dynamics and the non-blowup of 2D quasi-geostrophic equation[J].Methods of Analysis and its Applications,2006,13(2):157-180.
  • 5Li Y,Yurov A V.Lax pairs and darboux transformations for euler equations[J].Studies in Applied Mathematics,2003,111(1):101-113.
  • 6Li Y.Ergodic isospectral theory of the lax pairs of Euler equations with harmonic analysis flavor[J].Proceedings of the American Mathematical Society,2005,133(9):2681-2687.
  • 7Deng J,Ji M.Geometric structure and norrblowup of 2D Quasi-geostrophic equation[J].Journal of Fudan University:Natural Science,2008,47(2):224-231.
  • 8Hou T Y,Li R Blowup or no blowup? The interplay between theory and numerics[J].Physica D:Nonlinear Phenomena,2008,237(14-17):1937-1944.
  • 9Hou T Y.Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and NavierStokes equations[J].Acts.Numerics,2009,18:277-346.
  • 10Jin Kunpeng.Geometric structure and norrblowup of 2D Quasi-geostrophic equation[J].Journal of Fudan University:Natural Science,2009,48(2):224-230.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部