期刊文献+

集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用 被引量:35

Ensemble Kalman Smoother and Ensemble Kalman Filter Approaches to the Joint Air Quality State and Emission Estimation Problem
下载PDF
导出
摘要 此文目的是讨论污染源反演问题的统计方法。基于Bayes估计理论,该文将资料同化中的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波应用在污染源反演问题中。在详细给出污染源反演的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波的严格数学表达后,用一个简单的模型演示了集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的可行性,并且通过对比理想试验结果比较了集合卡尔曼平滑和集合卡尔曼滤波方法在反演污染源排放的效果,讨论了观测误差和污染源先验误差估计对反演结果的影响。试验结果表明在观测间隔小和观测误差小的情况下,集合卡尔曼滤波和集合卡尔曼平滑都可以有效地反演出随时间变化的污染源排放。当观测误差增大时,集合卡尔曼滤波和集合卡尔曼平滑的反演效果都有一定降低,但是反演误差的增加少于观测误差的增加,同时集合卡尔曼平滑(Ensemble Kalman smoother,简称EnKS)对观测误差比集合卡尔曼滤波(Ensemble Kalman fil-ter,简称EnKF)更为敏感。当观测时间间隔较大时,EnKF不能对没有观测时的污染源排放进行估计,仅能对有观测时的污染源排放进行较好的反演。而EnKS可以利用观测对观测时刻前的污染源排放进行反演,因此其效果明显好于EnKF,并且在观测时间间隔较大的情况下依然可以较好地反演出污染源排放。试验结果还显示污染源排放的先验误差估计对反演的结果有较大影响。 The purpose of this paper is to present some ensemble based statistical estimation methods for inversing modeling of pollution emissions. Previous studies using advanced sequential method to the joint air quality state and emission estimation problem focus on the ensemble Kalman filter (EnKF) or the discrete Kalman filter (DKF). However at each assimilation time, EnKF and DKF cannot update the emissions at the previous time, though their information is contained in the present observations. This is a major drawback, especially in the case of the time-variant emissions. Therefore it is necessary to investigate other methods that can overcome this drawback. Based on Bayes theorem, this study presents the detailed mathematical formulations of the ensemble smoother (ES), the ensemble Kalman smoother (EnKS) and the ensemble Kalman filter for the joint air quality state and emission estimation problem. Due to the adoption of ES and EnKS, the emission estimation at previous time can be updated by assimilating observation at the later time. A simple model is used to demonstrate the feasibility of the methods. The impacts of observational error and the prior error of the emission on estimation results are also discussed based on the experiments using the simple model. The results show that EnKS can estimate the time-variant emission well at every time step when the observations are not available at every time step, while the EnKF can only estimate the emission well at the observation time. When observations are available at every time step, EnKF and EnKS perform similarly. The larger observational errors can affect the estimation results of emission, but not very sensitively. It is also shown that overestimation or underestimation of the prior emissions uncertainty can bring larger estimation errors of emissions.
作者 朱江 汪萍
出处 《大气科学》 CSCD 北大核心 2006年第5期871-882,共12页 Chinese Journal of Atmospheric Sciences
基金 国家自然科学杰出青年基金40225015
关键词 集合卡尔曼平滑 集合卡尔曼滤波 空气质量 污染源 反演模拟 资料同化 ensemble smoother, ensemble Kalman filter, air quality, emission estimation, inversing modeling, data assimilation
  • 相关文献

参考文献6

二级参考文献48

  • 1朱江,曾庆存.A mathematical formulation for optimal control of air pollution[J].Science China Earth Sciences,2003,46(10):994-1002. 被引量:9
  • 2张仁健,王明星,李晶,杨昕,王秀玲.中国甲烷排放现状[J].气候与环境研究,1999,0(2):67-75. 被引量:59
  • 3黄世鸿,李如祥,沈恒华,陆百英,金华中,陈诚坤.常州市大气气溶胶颗粒来源解析[J].气象科学,1995,15(2):92-100. 被引量:21
  • 4赵德山 徐大海 等.城市大气污染总量控制方法手册[M].北京:中国环境科学出版社,1991..
  • 5真室哲雄.日本谷地的大气浮游粒子状物质的多元素分析(I)[J].大气污染杂志(日),1979,14(1):17-17.
  • 6张远航.兰州西固地区气溶胶污染物源的鉴别[J].环境科学学报,1987,7(3):269-269.
  • 7真室哲雄.日本谷地的大气浮游粒子状物质的多元素分析(II)[J].大气污染杂志(日),1999,14(1):17-17.
  • 8戴树桂.天津市采暖期飘尘来源解杂技[J].中国环境科学,1986,6(4):24-30.
  • 9杨绍晋.京津地区大气颗粒的表征及来源鉴别[J].环境科学学报,1987,7(4):411-423.
  • 10刘勇 康立山 陈毓屏.非数值并行算法(第二册)--遗传算法[M].北京:科学出版社,2000..

共引文献116

同被引文献407

引证文献35

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部