期刊文献+

应用进化踪迹及分子动力学模拟研究β2肾上腺素受体突变活性(英文) 被引量:2

Evolutionary Trace and Molecular Dynamics Simulation of the Beta2 Adrenergic Receptor Mutation-induced Activation
下载PDF
导出
摘要 β2肾上腺素受体(β2adrenergic receptor,β2AR)是G蛋白耦联受体(G protein coupled receptors,GPCRs)超家族中的一员,也是研究治疗哮喘的关键药物受体靶标.采用进化踪迹(evolutionary trace,ET)方法分析肾上腺素受体家族跨膜区片段序列,识别出了44个保守的残基,然后将β2肾上腺素受体以及受体D130N活性突变体、D79N失活突变体进行分子动力学模拟,试图找出与受体不同功能状态相关的结构动力学特征.发现受体DRY motif中的D130远离R131而转向K149残基这一结构特征与受体活性高度关联,此外,从残基相互作用的变化推断出了受体helix 2,4 and 6伴随着受体活化而发生的运动.这些研究结果对进一步探索β2肾上腺素受体突变体的激活机制以及所诱发疾病的分子机理提供了依据. Beta2 adrenergic receptor (132 AR) is one member of G protein coupled receptors (GPCRs), which is a key pharmaceutical target in the treatment of asthma. Evolutionary trace (ET) method was employed to analyze AR sequences and 44 conserved residues were identified. Then molecular dynamics (MD) simulation of the 132 wild-type receptor, D130N active mutant and D79N inactive mutant were carried out and tried to explore the structural/dynamic features characterizing fimctionally different states of the receptor, by means of investigating ET identified conserved basic residues in the wild-type receptor and its two mutants. Particularly, it was found that the departing of D 130 from R 131 of DRY motif and approaching to K149 are highly correlated with the receptor activation, and the movement of helix 2, 4 and 6 upon receptor activation is inferred from the observation that R 151 and K270 interact with other residues in the receptor active state on the basis of little change of the side chain orientations. The results might provide further insights into the activating mechanism of 132 AR mutants, as well as the molecular bases of the diseases induced by the mutations of the receptor.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2006年第9期861-868,共8页 Progress In Biochemistry and Biophysics
基金 国家重点基础研究发展计划(973)资助项目(2003CB715900) 国家自然科学基金资助项目(90303017) 国家高技术研究发展计划(863)资助项目(2002AA234041)~~
关键词 肾上腺素受体 组成性活性 进化踪迹方法 G蛋白耦联受体 同源模建 adrenergic receptor, constitutive activity, evolutionary trace, G protein coupled receptors(GPCR), homology modeling
  • 相关文献

参考文献22

  • 1Gether U,Kobilka B K.G protein-coupled receptors Ⅱ.Mechanism of agonist activation.J Biol Chem,1998,273 (29):17979~17982
  • 2Palczewski K,Kumasaka T,Hori T,et al.Crystal structure of rhodopsin:a G protein-coupled receptor.Science,2000,289 (5480):739~745
  • 3Ballesteros J A,Jensen A D,Liapakis G,et al.Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6.J Biol Chem,2001,276 (31):29171~29177
  • 4Rasmussen S G F,Jensen A D,Liapakis G,et al.Mutation of a highly conserved aspartic acid in the β2 adrenergic receptor:constitutive activation,structural instability,and conformational rearrangement of transmembrane segment 6.Mol Pharmacol,1999,56 (1):175~184
  • 5Scheer A,Fanelli F,Costa T,et al.The activation process of the α1B-adrenergic receptor:Potential role of protonation and hydrophobicity of a highly conserved aspartate.Proc Natl Acad Sci USA,1997,94 (3):808~813.
  • 6Horn F,Bettler E,Oliveira L,et al.GPCRDB information system for G protein-coupled receptors.Nucleic Acids Res,2003,31 (1):294~297
  • 7Chothia C,Lesk A M.The relation between the divergence of sequence and structure in proteins.The EMBO J,1986,5 (4):823~826
  • 8Gershengorn M C,Osman R.Minireview:insights into G protein-coupled receptor function using molecular models.Endocrinology,2001,142 (1):2~ 10
  • 9Ghanouni P,Schambye H,Seifert R,et al.The effect of pH on β2adrenoceptor function-evidence for protonation-dependent activation.J Biol Chem,2000,275 (5):3121 ~3127
  • 10Lichtarge O,Bourne H R,Cohen F E.Evolutionary conserved Gαβγbinding surfaces support a model of the G protein-receptor complex.Proc Natl Aead Sci USA,1996,93 (15):7507~7511

同被引文献23

  • 1张媛,李泽生,孙苗,肖景发,白玉白,李铁津,孙家锺.乙型肝炎表面抗原片段三维结构的同源模建及其配体的设计[J].高等学校化学学报,2005,26(1):102-105. 被引量:6
  • 2张鸿彦,曲章义,王鹏,陈晶,郑红霞,魏凤香.腺病毒六邻体蛋白结构、功能及疫苗研究[J].国际免疫学杂志,2006,29(2):126-128. 被引量:16
  • 3Madisch I. , Harste G. , Pommer H. , et al.. J. Virol. [J] , 2005, 79(24) : 15265--15276.
  • 4Lu X. D. D.. Erdman. Arch. Virol. [J], 2006, 151(8) : 1587-1602.
  • 5Okada M. , Ogawa T. , Kubonoya H. , et al.. Arch. Virol. [ J ] , 2007, 152 ( 1 ) : 1-9.
  • 6Berman H. M. , Westbrook J. , Feng Z. , et al.. Nucleic Acids Research[J] , 2000, 28( 1 ) : 235--242.
  • 7Rux J. J. , Kuser P. R. , Burnett R. M.. J. Virol. [J] , 2003, 77(17) : 9553--9566.
  • 8Piehla-Gollon S. L. , Drinker M. , Zhou X. , et al.. J. Virol. [J] , 2007, 81(4) : 1680--1689.
  • 9Gellert A. , Salanki K. , Naray-Szabo G. , et al.. J. Mol. Graph. Model[J] , 2006, 24(5) : 319--327.
  • 10Lichtarge O. ,Boume H. R. , Cohen F. E.. J. Mol. Biol. [J] , 1996, 257(2) : 342--358.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部