摘要
使用复数向量法对9杆巴氏桁架4个回路建立几何关系,列出矢量方程组并转化成为复指数形式.首先使用结式对4个多项式方程直接消元,得到1个一元52次的多项式方程,再用辗转相除法求其他3个变量,在此过程中发现了6个增根.分析了产生增根的原因并提出了消元过程中避免增根的改进措施,即寻找相关向量之间的关系,在消元过程中降低变量的次数,直接得到一元46次方程.最后通过一个算例,验证了这种巴氏桁架的解析解的数目为46.
The vector equations are set up for four loop of one kind of nine-link Barranov truss by complex number vector method, and the four equations are changed into complex exponential number form. Firstly, a 52 degree univariate polynomial equation is deduced by using resultant elimination method. 6 extraneous roots are found during the process to obtain the other 3 variables by using Euclidean algorithm. The production reason of extraneous roots is analyzed and the improved method is proposed, that is the degree of the variables during the elimination process is reduced by searching relations among the vectors, so that a 46 degree univariate polynomial equation can be obtained directly. Finally, it is verified that the analytical solutions number of this kind of Barranov truss is 46 by a numerical example.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2006年第3期12-16,共5页
Journal of Beijing University of Posts and Telecommunications
基金
国家"973计划"项目(2004CB318000)
国家自然科学基金项目(50475161)
2004年教育部科学技术研究重点项目(104043)
高等学校博士学科点专项科研基金课题(20050013006)
关键词
9杆巴氏桁架
位置分析
结式消元法
辗转相除法
nine-link Barranov truss
displacement analysis
resultant elimination
Euclidean algorithm