期刊文献+

中层及低热层大气对局地时变热源的响应 被引量:1

Response of Mesosphere and Lower Thermosphere to a Localized and Time-Variable Thermal Source
下载PDF
导出
摘要 采用二维交替方向隐格式(ADI),数值模拟了中高层大气对一个位于对流层高度范围的局地时变热源的响应.分析了这一过程中大气响应的能量密度,水平波数,垂直波数以及频率.模拟结果表明:响应波动携带能量向上传播,集中在较为狭窄的水平区域,该区域关于源的水平位置对称;相对于动量源驱动,热源的水平尺度对响应的水平波长决定性作用更加明显;对于高频振荡的热源,其响应的频率和源一致;响应的垂直波长(41 km)比源的垂直尺度(6 km)大得多. By using the alternative-direction-implicit scheme, a two-dimensional fully nonlinear compressible atmospheric dynamic model is established, with which, the responses of the mesosphere and lower thermosphere to a localized and time-variable thermal source and a momentum forcing source in the troposphere are numerically simulated respectively. And then the energy density, the horizontal and vertical wavenumber and the frequency of the response are analyzed. The numerical results show that the response carrying the energy propagates from the troposphere and lower stratosphere upward to the mesosphere and lower thermosphere within a relatively narrow horizontal field which is symmetrical about the horizontal location of the heat source. The effect of the heat source upon the response is much stronger than that of the momentum forcing source. It is different in affecting the frequency, the horizontal wave length and the vertical wave length of the induced gravity wave. The horizontal wave length can be determined by the horizontal scale of the heat source, the frequency of the response is almost the same with the heat source with high frequency in the simulation, but the vertical wave length of the response is much larger than the vertical scale of the source. Usually, the longer the horizontal scale of the thermal source is, the larger the vertical wave length of the induced gravity wave.
作者 谢边 张绍东
出处 《空间科学学报》 CAS CSCD 北大核心 2006年第5期331-336,共6页 Chinese Journal of Space Science
基金 国家自然科学基金项目(40575020 40336054) 教育部科技创新工程重大项目培育资金项目 新世纪优秀人才支持计划共同资助
关键词 交替方向隐格式 热源 重力波 Alternative-direction-implicit scheme, Heat source, Gravity-wave
  • 相关文献

参考文献15

  • 1Hans Volland. Atmospheric Tidal Planetary Wave.Boston: Kluwer Academic Publishers, 1988, 1-5
  • 2Lindzen R S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 1981,86(10):9707-9714
  • 3Holton J R. The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere.J. Atmos. Sci., 1982, 39(8):791-799
  • 4Fritts D C, Rastogi P K. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio.Sci., 1985, 20(5):1247-1277
  • 5Yeh K C, Liu C H. Acoustic-gravity waves in the upper atmosphere. Res. Geophys., 1974, 12(2):193-216
  • 6Eliasen E, Machenhauer B. On the observed large-scale atmospheric wave motions. Tellus, 1969, 21:149-165
  • 7Vincent R A. Gravity-wave motions in the mesosphere and lower thermosphere observed at Mawson, Antartica.d. Atmos. Terr. Phys., 1994, 56:593-602
  • 8Portnyagin Y I et al. Some results of S-transform analysis of the trasient planetary-scale wind oscillation in the lower thermosphere. Earth Planetary Space, 1999,51:711-717
  • 9Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 2003,41:10.1029/2001RG000106
  • 10Fovell R, Durran D R, Holton J R. Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 1992, 49:1427-1442

同被引文献20

  • 1Hines C O. Internal atmospheric gravity waves at iono- spheric heights [J]. CaTz. Y. Phys., 1960, 38:1441-1481.
  • 2Fritts D C. Gravity wave saturation in the middle atmo- sphere: A review of theory and observations [J]. Rev. Geo- phys., 1984, 22:275-308.
  • 3Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere [J]. Rev. Geophys., 2003, 41(1), 1003, doi:10.1029/2001RG000106.
  • 4Pierce A D, Coroniti S C. A mechanism for the gener- ation of acoustic-gravity waves during thunderstorm for- mation [J]. Nature, 1966, 210(5042):1209-1210.
  • 5Taylor L L. Mesospheric heating due to intense tropo- spheric convection [M]. Washington D C: NASA Contrac- tor Report, 1979. 3132.
  • 6Hines C O. Dynamical heating of the upper atmo- sphere [J]. d. Geophys. Res., 1965, 70:177.
  • 7Larsen M F, Swartz W E, Woodman R F. Gravity-wave generation by thunderstorms observed with a vertically-pointing 430 MHz radar[J]. Geophys. Res. Lett., 1982, 9:571.
  • 8Taylor M J, Hapgood M A. Identification of a thunder- storm as a source of short period gravity waves in the upper atmospheric nightglow emissions [J]. Planet Space Sci., 1988, 36:975.
  • 9Holton J R. An Introduction to Dynamic Meteorology [M]. San Diego: Academic Press, 1972. 54.
  • 10Anderson C E. Cumulus Dynamics [M]. New York: Perg- amon Press, 1960. 57.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部