期刊文献+

9~10世纪伊斯兰世界两部代数著作的比较研究

A Comparative Study on Al-Khwārizmī's Algebra and Abū Kāmil's Algebra
下载PDF
导出
摘要 花拉子米的《代数学》首次给出一元二次方程的一般解法,从此方程的解法成为代数学的基本特征,并为代数学的发展提供了方向.艾布.卡米勒是继花拉子米之后第一位著有代数著作的数学家,他的《代数书》被视为《代数学》的评注书,所给出的解法更具一般性和系统性,所选例题也更多样化;而且,当遇到具无理系数的方程时,作者放弃了几何证明,具有明显的算术化趋势.两部著作传入欧洲后,大部分内容被纳入斐波那契的《实用几何》中,因此得以广泛的流传. Al-Khwārizmī's Algebra first gave all the solutions to the quadratic equations. From then on, the solution to the equations is considered to be the basic characteristic of algebra. It provided development direction of algebra. After Al-Khwārizmī, Abū Kāmil is the first algebraist who wrote books about algebca. Comparing with Al-Khwārizmī's Algebra, we find that Abū Kāmil^s Algebra is considered to be the commentatory of Al-Khwārizmī's Algebra. Besides Abū Kāmil gave the more general, more systemic methods of the solution to queadratic equation with more various examples. When the coefficients of quadratic equations were irrational numbers, Abū Kāmil abandoned the geometry demonstration showing the trend of arithmetization. After their works were introduced to Europe, most of their contents were brought into Practica Geornetriae written by Fibonacci and became prevalent.
作者 杜瑞芝 刘琳
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2006年第3期271-274,共4页 Journal of Liaoning Normal University:Natural Science Edition
基金 吴文俊数学与天文丝路基金资助项目(WSF2003-02)
关键词 《代数学》 《代数书》 希腊几何 代数恒等式 算术化趋势 ilm al-jabr wa'l-muqubalah Book on Algebra Greek geometry algebraic identical equation the trend of arithmetization
  • 相关文献

参考文献7

  • 1FREDERICK R.The Algebra of Mohammed Ben Musa.Theology,Ethics and Metaphysics(Royal Asiatic Society Classics of Islam),Volume I[M].London:Routledge,2003.
  • 2LEVEY M.,The Hebrew text translation of The Algebra of Abū of Kāmil[M].Madison Milwaukee and London:The University of Wisconsin Press,1966:12-54.
  • 3杜瑞芝.花拉子米和他的代数论著[J].数学的实践和认识,1987,(1):79-85.
  • 4KARPINSKI L C,ROBERT C.Latin Translation of the algebra of al-Khowarizmi[M].New York:The Macmillan Company,1915:34-39.
  • 5BERGGREN J L.Episodes in the Mathematics of Medieval Islam[M].Berlin:Springer-Velag,1986:108-110.
  • 6梁宗巨.世界数学通史[M].沈阳:辽宁教育出版社,1996:252.
  • 7杜瑞芝.阿布·卡米尔的《代数书》[J].辽宁师范大学学报:自然科学版,1987,(4):22-29.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部