期刊文献+

基于K-L散度的机械或传感器故障判别方法 被引量:3

DISCRIMINANT APPROACH TO THE MACHINERY OR SENSOR FAULT BASED ON THE K-L DIVERGENCE
下载PDF
导出
摘要 机械故障诊断系统中,对同一监测部位通常采用双传感器配置(如水平和垂直方位)。文中首先运用核密度估计方法得到两传感器输出信号的概率密度函数估计,然后计算两输出信号间K-L(Kullback-Leiber)散度,并提出一种基于K-L散度值的机械或传感器故障判别准则。通过对一个齿轮减速箱实测振动信号和模拟的传感器故障信号的计算,可以发现,与无故障状态时K-L散度相比,监测部位出现机械故障时两传感器输出信号间K-L散度显著减小;而两传感器之一出现故障时其K-L散度显著增大。因此,两信号间K-L散度的变化可用于区别机械和传感器故障。 It is usually the case for a mechanical fault diagnosis system to configure two sensors in the same monitoring position. The two sensors' output signals are used to estimate their respective probability density using kemel density estimation method, and then the K-L(Kullback-Leiber) divergence between two output signals is calculated. A discriminating approach of machinery or sensor faults is proposed based on the K-L divergence. Through evaluating real vibration signals measured on a gearbox and some simulated sensor fault signals, it is shown that contrasted to the K-L divergence between two sensors' output signals with fault-free condition, the K-L divergence decreases significantly when a progressed pitting in gears occurs; while it increases significantly when one of two sensors shows some faults. Therefore, the K-L divergence could be an index to distinguish between machinery and sensor faults.
出处 《机械强度》 EI CAS CSCD 北大核心 2006年第5期670-673,共4页 Journal of Mechanical Strength
关键词 K-L散度 故障诊断 传感器检测 K-L divergence Fault diagnosis Sensor detection
  • 相关文献

参考文献6

二级参考文献33

共引文献36

同被引文献34

  • 1周志锋,蔡萍,许嘉,陈日兴.基于经验模态分解的汽车动态称重数据处理[J].中国机械工程,2005,16(20):1813-1816. 被引量:15
  • 2向玲,朱永利,唐贵基.HHT方法在转子振动故障诊断中的应用[J].中国电机工程学报,2007,27(35):84-89. 被引量:28
  • 3Huang N E,Shen Z,Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A:Mathematical Physical and Engineering Sciences,1998,(1971):903-995.doi:10.1098/rspa.1998.0193.
  • 4Huang N E,Shen Z,Long S R. A new view of nonlinear water waves:The Hilbert Spectrum 1[J].{H}Annual Review of Fluid Mechanics,1999,(1):417-457.
  • 5傅祖芸.信息论[M]{H}北京:电子工业出版社,200124-27.
  • 6王星.非参数估计[M]{H}北京:清华大学出版社,2009207-211.
  • 7Jones M C,Marron J S,Sheather S J. A brief survey of bandwidth selection for density estimation[J].{H}Journal of the American Statistical Association,1996,(433):401-407.
  • 8李力.机械信号处理及其应用[M]{H}武汉:华中科技大学出版社,2007.
  • 9Huang N E,Shen Z. The empirical mode decomposition and the hilbert spectrum for non-linear and non-stationary time series analysis[A].London,1998.
  • 10Huang N E. Anew view of non-linear waves- the hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,(05):417-457.

引证文献3

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部