期刊文献+

车削过程切削力的计算机数值仿真 被引量:11

COMPUTERIZED NUMERICAL SIMULATION OF CUTTING FORCE IN TURNING PROCESS
下载PDF
导出
摘要 切削力是表征切削过程最重要特征的物理量,其动态变化将直接影响加工过程中刀具与工件的相对位移、刀具磨损和表面加工质量等,所以对切削力建模是进行加工过程物理仿真研究的基础。因此在基于实时工况的切削实验研究基础上,考虑切削参数的因素,利用BP(back propagation)神经网络建立车削过程中的切削力的仿真模型。通过大量的样本训练,使神经网络能够对切削力进行较准确地数值仿真。 Cutting force is a basic parameter and it directly influences relative displacement between tool and workpiece, tool wear and surface quality in turning operation. Therefore, simulation model of cutting force is an important part of machining physical simulation research. A reliable and sensitive technique for monitoring the machining process without interrupting the process, is crucial in realization of research platform of simulation model. The prediction model based on back propagation neural network is established. After the training process is finished, the neural network becomes a knowledge-based system and accurately estimates them. Results showed that cutting force can be accurately estimated by using neural network in unknown cutting conditions.
出处 《机械强度》 EI CAS CSCD 北大核心 2006年第5期725-728,共4页 Journal of Mechanical Strength
基金 国家自然科学基金项目(50475117和50175081) 天津市科技攻关重点项目(033181611)资助~~
关键词 车削系统 人工神经网络 切削力 数值仿真 Turning system Artificial neural network Cutting force Numerical simulation
  • 相关文献

参考文献5

  • 1Sumit Kanti Sikdar,Mingyuan Chen.Relationship between tool flank wear area and component forces in single point turning.Journal of Materials Processing Technology,2002,128(1-3):210~215.
  • 2Li X P,Iynkaran K,Nee A Y C.A hybrid machining simulatorbased on predictive machining theory and neural network modeling.Proceedings of the CIRP International Workshop on Modeling of Machining Operations Atlanta,Georgia,USA,1998.417~428.
  • 3Chungchoo C,Saini D.On-line tool wear estimation in CNC turning operations using fuzzy neural network model.International Journal of Machine Tools & Manufacture,2002,42(1):29~40.
  • 4焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 5Tamas Szecsi.Cutting force modeling using artificial neural networks.Journal of Materials Processing Technology,1999,92(93):344~349.

共引文献50

同被引文献64

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部