期刊文献+

函数学习的小波再生核支持向量回归模型(英文) 被引量:1

Support Vector Regression Model with Wavelet Reproducing Kernel for Function Learning
下载PDF
导出
摘要 受小波理论与再生核Hilbert空间理论的启发,提出了一种新的小波再生核。该小波再生核由不同分辨率的小波基函数生成,并且是一种容许的支持向量核。应用该小波再生核,构造了用于函数学习的最小二乘支持向量回归模型。这种回归模型融合了支持向量机与小波的优点。仿真例子说明了该方法的可行性与有效性。 Based on the theory of wavelet analysis and reproducing kernel Hibert space(RKHS),a new wavelet reproducing kernel is proposed in this paper.The generated bywavelet basis function has different resolution,and the wavelet reproducing kernel is an admissive support vector kernel which can be used to construct least square support vector regression model for function learning.The regression model incorporates the advantage of the support vector regression and the wavelet analysis.Simulation examples are given to illustrate the feasibility and effectiveness of the method.
作者 彭宏 王军
出处 《西华大学学报(自然科学版)》 CAS 2006年第5期41-44,共4页 Journal of Xihua University:Natural Science Edition
基金 importanceprojectfoundationoftheeducationdepartmentofsichuanprovince,china(2005A117)
关键词 小波分析 再生核 支持向量回归 wavelet analysis reproducing kernel support vector regression
  • 相关文献

参考文献8

  • 1[1]Vapnik,V.The Nature of Statistical Learning Theory[M].Springer-Verlag,Berlin Heidelberg New York,2001.
  • 2[2]Cortes,C.,Vapnik,V.:Support Vector Networks[J].Machine Learning,1995,(20):273-297.
  • 3[3]Smola,A.,Sch(o)lkopf,B.:A Tutorial on Support Vector Regression[Z].NeuroCOLT Technical Report NC-TR-98-030,Royal Holloway College,University of London,UK,1998.
  • 4[4]Zhang,L.,Zhou,W.D.,Jiao,L.C.:Wavelet Support Vector Machine[J].IEEE Trans.Systems,Man,and Cybernetics -Part B:Cynernatics,2004,(34 20):34-39.
  • 5[5]Peng,H.,Pei,Z.,Wang,J.:Constructing Multi-resolution Support Vector Regression Modelling[A].AI2005,Lecture Notes in Artificial Intelligence,2005,(3809):942-945.
  • 6[6]Mallat,S.G.:A Theory for Multiresolution Signal Decomposition:The Wavelets Representation[J].IEEE Trans.Pattern Anal.Machine Intell.,1989,(11):674-693.
  • 7[7]Rakotomamonjy,A.,Canu,S.,Brucq,D.D.:Frame Kernels for Learning[A].ICANN,Lecture Notes in Computer Science,2002,(245):707-712.
  • 8[8]Zhang,Q.,Benveniste,A.:Wavelet Networks[J].IEEE Trans.Neural Networks,1992,(3):889-898.

同被引文献19

  • 1李元诚,方廷健.小波支持向量机[J].模式识别与人工智能,2004,17(2):167-172. 被引量:13
  • 2林继鹏,刘君华.基于小波的支持向量机算法研究[J].西安交通大学学报,2005,39(8):816-819. 被引量:25
  • 3武方方,赵银亮.最小二乘Littlewood-Paley小波支持向量机[J].信息与控制,2005,34(5):604-609. 被引量:14
  • 4Burges CJC. A tutorial on support vector machines for pattern recognition [J ]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 5A Smola and Scholkopf. A tutorial on support vector regression. Royal Holloway Coll. Univ. London, 1998.
  • 6Johan Suykens A K. Nonlinear Modeling and Support Vector Machines[C]IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001.
  • 7J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters(S1370-4621), 1999, 9(3) : 293-300.
  • 8Campbell, Colin. Kernel methods: a survey of eurrent techniques [J].Neurocomputing, 2002, 48(1-- 4) : 63-84.
  • 9Zhang L, Zhou W D, Jiao L C. Wavelet Support Vector Machine[J]. IEEE Trans. Systems, Man, and Cybernetics -- Part B :Cybernetics, 2004, 34(1) :34-39.
  • 10G Z Liu and S L Di. Wavelet Analysis and Application. Boca Ration[M]. FL:CRC, 1994.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部