期刊文献+

通过腔QED实现高效的两原子的受控位相门 被引量:2

Realization of two-atom quantum controlled phase gate with high efficiency via cavity QED
下载PDF
导出
摘要 量子计算是近年来新出现的计算技术,具有非常好的发展前景。任何量子计算都能够被简化到一个门序列,而量子计算要利用某种物理体系来实现。介绍了一种通过腔QED实现高效的两原子的受控位相门的方案。此方案中,原子跃迁与腔模处于大失谐,因此原子自发辐射的影响得到了极大的抑制,从而提高了成功几率。而保真度取决于α、β、γ、δ几个常数的取值,数值计算结果表明我们的方案具有比较高的保真度,其保真度的平均值F=0.982318。该方案有一定的实验可行性,有望得到实验上的验证。 Any quantum computation can be simplified to a gate sequence. But the quantum computation is carried out by a certain physical system. We propose here a scheme to carry out two-atom quantum controlled phase gate through cavity QED. In our scheme, the atomic transition is largely detuned with the cavity mode of interest, so the atomic spontaneous emission loss is strongly suppressed, and this leads to the enhancement of probability of gate operation. But fidelity is decided by constants α,β,γ. The numerical calculation based on current experimental technology shows that our scheme has high gate fidelity, the average value of fidelity ^-F = 0.982318. That scheme can be realized by experiment.
作者 苏晓琴
出处 《量子电子学报》 CAS CSCD 北大核心 2006年第5期621-627,共7页 Chinese Journal of Quantum Electronics
基金 山西省高校科技研究开发项目(200613044)资助
关键词 量子光学 量子信息 量子计算 腔QED 量子相位门 CPF门 quantum optics quantum information quantum computation cavity quantum electrodynamics quantum phase gate controlled phase flop
  • 相关文献

参考文献26

  • 1苏晓琴,郭光灿.量子通信与量子计算[J].量子电子学报,2004,21(6):706-718. 被引量:62
  • 2Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Phys. Rev. Lett., 1995, 74( 20): 4091-4094.
  • 3Cirac J I, Zoller P. A scalable quantum computer with ions in an array of microtraps [J]. Nature, 2000, 404: 579-581.
  • 4Pellizzari T, Gardiner S A, Cirac J I, et al. Decoherence, continuous observation, and quantum computing: a cavity QED model [J]. Phys. Rev. Lett., 1995, 75(21): 3788-3791.
  • 5Sleator T, et al. Realizable universal quantum logic gates [J]. Phys. Rev. Lett., 1995, 74(20): 4087-4090.
  • 6Rauschenbeutel A, Nogues G, et al. Coherent operation of a tunable quantum phase in cavity QED [J]. Phys. Rev. Lett., 1999, 83(24): 5166-5169.
  • 7Gerschenfeld N A, Chuang I L. Bulk spin-resonance quantum computation [J]. Science, 1997, 275: 350-356.
  • 8Kane B E. A silicon-based nuclear spin quantum computer [J]. Nature, 1998, 393: 133-137.
  • 9Barenco A, Deutsch D, Ekert A. Conditional quantum dynamics and logic gates [J]. Phys. Rev. Lett., 1995,74(20): 4083-4086.
  • 10Loss D, Divincenzo D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57(1): 120-126.

二级参考文献67

  • 1苗二龙,莫小范,桂有珍,韩正甫,郭光灿.相位调制自由空间量子密钥分配[J].物理学报,2004,53(7):2123-2126. 被引量:18
  • 2[1]Pellizzari T,Gardiner S,Cirac J,et al.Decoherence,continuous observation,and quantum computing:a cavity QED model [J].Phys.Rev.Lett.,1995,75:3788-3791.
  • 3[2]Zheng S B,Guo G C.Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J].Phys.Rev.Lett.,2000,85:2392-2395.
  • 4[3]Sleator T,Weinfurter H.Realizable universal quantum logic gates [J].Phys.Rev.Lett.,1995,74:4087-4090.
  • 5[4]Turchette Q A,Hood C J,Lange W,et al.Measurement of conditional phase shifts for quantum logic [J].Phys.Rev.Lett.,1995,75:4710-4713.
  • 6[5]Cirac J I,Zoller P.Quantum computations with cold trapped ions [J].Phys.Rev.Lett.,1995,74:4091-4094.
  • 7[6]Sleane A.The ion trap quantum information processor [J].Appl.Phys.B,1997,64:623.
  • 8[7]Gershenfield N A,Chuang I L.Bulk spin-resonance quantum computation [J].Science,1997,275:350.
  • 9[8]Cory D G,Fahmy A F,Havel T F.Ensemble quantum computing by NMR spectroscopy [J].Proc.Natl.Acad.Sci.U.S.A.,1997,94:1634.
  • 10[9]Jones J A,Mosca M,Hansen R H.Implementation of a quantum search algorithm on a quantum computer [J].Nature (London),1998,393:344-346.

共引文献79

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部