期刊文献+

基于尺度空间理论和反扩散函数的图像去噪 被引量:2

Scale-Space and Inverse Diffusion Function Based Image Denoising
下载PDF
导出
摘要 在使用扩散过程平滑噪声之后引入反扩散过程来恢复边缘,结合尺度空间理论和反扩散函数对图像进行去噪处理。该方法使用最小描述长度(M DL)准则自适应地选择图像中每一点处的最优尺度对图像进行滤波,加入尺度范围限制降低了过平滑和欠平滑的影响,改进了反扩散函数模型,对降质图像中的边缘进行恢复。与经典的滤波方法以及各向异性扩散方程的结果相比,本文方法取得了较好的效果。 An image denoising method is proposed by employing an inverse diffusion to restore edge information after image smoothing, combining the scale-space theory and the inverse diffusion function for image denoising. The novel method adopts the minimal description length (MDL) to self-adaptively choose the optimal scale for each pixel to smooth the image, and reduces the infection of over-smoothing or lack of smoothing by restricting the scale range. And it improves the inverse diffusion function to restore step edges on the degraded image. Experiments show that the method is more effective than classical filters and the anisotropic diffusion.
出处 《数据采集与处理》 CSCD 北大核心 2006年第3期251-255,共5页 Journal of Data Acquisition and Processing
基金 国家"八六三"高技术研究发展计划(2004AA783052)资助项目
关键词 图像去噪 尺度空间 自适应高斯滤波 反扩散函数 image denoising scale-space adaptive Gaussian filtering inverse diffusion function
  • 相关文献

参考文献8

  • 1Sapiro G, Geometric partial differential equations and image analysis [M]. UK:Cambridge University Press, 2001:221-228.
  • 2Perona P, Malik J. Scale space and edge detection using anisotropic diffusion[J]. IEEE Trans PAMI,1990, 12(7):629-639.
  • 3Witkin A. Scale-space filtering: a new approach to multi scale description [C]// IEEE Proc ICASSP.San Diego,California:[s. n.],1984,9:150-153.
  • 4Koenderink J J. The structure of images[J]. Biological Cybernetics, 1984,50 : 363-370.
  • 5Li Xin. Low bit rate image coding in the scale space[C]// IEEE Proc DCC. Snowbird, Utah:[s. n.],2002:33-42.
  • 6Barron A, Rissanen J, Yu Bin. The minimum description length principle in coding and modeling [J]. IEEE Trans PAMI, 1998, 10(6): 2743-2760.
  • 7Gomez G. Local smoothness in terms of variance:the adaptive Gaussian filter[C]// Proc BMVC. Bristol,UK:[s, n.],2000:815 824.
  • 8Beek P V. Edge based image representation and coding[D]. The Netherland : Delft University, 1995.

同被引文献22

  • 1Lee J S. Digital image enhancement and noise filtering by use of local statistics [J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1980, 2 (2): 165-168.
  • 2Achim A, Tsakalides P. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling [J]. IEEE Trans on Geoseienee and Remote Sensing, 2003, 41(8):1773-1784.
  • 3Yang Zhi, Martin D F. Speckle reduction and structure enhancement by multichannel median boosted anisotropic diffusion [J]. Eurasip Journal on Applied Signal Processing, 2004,16: 2492-2502.
  • 4Yu Yongjian, Acton Scott T. Speckle reduction anisotropie diffusion [J]. IEEE Trans on Image Processing, 2002, 11(11): 1260-1270.
  • 5Lee Jong Sen. Speckle suppression and analysis for synthetic aperture radar images [J]. Optical Engineering, 1986, 25(5) :636-643.
  • 6Kuan D T,Sawchuk A A, strand T C, et al. Adaptive restoration of images with speckle[J]. IEEE Trans ASSP, 1987,35(3):373-382.
  • 7Frost V S, Stiles J A, Shanmugan K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise [J]. IEEE Trans Pattern Anal Machine Intell, 1982,PAMI-4: 157-166.
  • 8Dong Y. Toward edge sharpening..a SAR speckle filtering algorithm [J]. IEEE Trans on Geoscience and Remote Sensing, 2001,39 (A): 851-863.
  • 9Polyzos S A,Kita M, Avramidis A. Thyroid nodules-stepwise diagnosis and management[J]. HORMONES, 2007,6 (2): 101-119.
  • 10Garcia S,Derrac J,Cano J R, et al. Prototype selection for nearest neighbor classification: taxonomy and empirical study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(3) : 417-435.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部