期刊文献+

基于小波分析的汽轮发电机组振动信号消噪和特征提取 被引量:4

De-noising and feature extraction of vibration signals for turbogenerator units by using wavelet analysis
原文传递
导出
摘要 小波分析技术由于其良好的时频局部化性质,对突变和非平稳信号的分析具有良好的效果,已经成为信号消噪、特征提取和故障诊断的重要方法之一。针对汽轮发电机组的振动特征,采用基于最优小波包基的方法对汽轮发电机组的振动信号进行消噪处理,有效地剔除了汽轮发电机组表面振动信号的噪声干扰,提高了信号的信噪比;对消噪后的信号进行小波包分解,并将各相关频带进行能量特征提取,从而为汽轮发电机组振动信号的故障诊断提供了有力依据。 With good time-frequency localization and good analysis results of sudden-change signals and non-stationary signals, the wavelet analysis technology is one the important methods for signal de-noising, feature extraction, and fault diagnosis. Based on the vibration characteristic of turbo-generator units, the optimal wavelet package basis was used to de-noise the vibration signal of turbo-generator units, and the noise disturbance of the vibration signal is effectively eliminated, and the signal-noise ratio of the signal is improved. The de-noised signals were decomposed by wavelet package, and the energy feature was extracted from relevant frequency bands, which provides support for fault diagnosis of vibration signals for turbo-generator units.
出处 《华东电力》 北大核心 2006年第9期10-13,共4页 East China Electric Power
基金 教育部科学技术研究重点项目(206049) 上海市教委重点科研项目(05ZZ53) 上海市重点学科建设项目(P1303)
关键词 汽轮发电机组 振动 小波消噪 特征提取 turbo-generator unit vibration wavelet de-noising feature extraction
  • 相关文献

参考文献5

二级参考文献10

共引文献19

同被引文献52

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部