期刊文献+

Hermite流形上的δ张量

On the δ-tensor Form of Hermite Manifolds
下载PDF
导出
摘要 在Hermite流形上引入一个δ张量,指出其与Kahler形式的内在联系,应用于研究Kahler流形上保角向量场和Riemann联络的关系.并给出Kahler流形判定定理的内蕴证明. In this paper, a tensor form δ for a Hermitian manifold is introduced, its intrinsic relation-ship with the Kaehler form is discussed.The conformal vector fields on Kaehler manifolds are investigated,an intrinsic proof of the criterion for Kaeihler manifolds is given.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2006年第4期13-16,共4页 Journal of Qufu Normal University(Natural Science)
基金 北京市教育委员会科技发展计划项目
关键词 Hermite流形 保角向量场 KAEHLER流形 Riemann联络 Hermitian manifold conformal vector fields Kaehler manifold Riemann connection
  • 相关文献

参考文献4

  • 1王培合,沈建华.黎曼流形上Ф-次调和函数的平均值不等式[J].曲阜师范大学学报(自然科学版),2005,31(1):7-10. 被引量:1
  • 2Chern S S.Vector bundle with connection,In:Selected Papers Vol.4[M].New York:Springer-Verlag,1989.245-268.
  • 3Helgason S.Differential Geometry,Lie Groups,and Symmetric Spaces[M].New York:Acadamic Press,1978.
  • 4Petersen P.Riemanian Geometry[M](GTM171).New York:Springer-Verlag,1998.

二级参考文献8

  • 1Cheng S Y, Tam L F, Tom Y-H Wan. Harmonic maps with finite total energy [J]. Proceeding of the A M S, 1996, 124:275 - 284.
  • 2Li P. Lecture notes on Geometric Analysis [C]. Lecture Notes series 6-Research Institute of Mathematics and Global Analysis Research Center. Seoul National University, Seoul, 1993.
  • 3Cheng S Y, Yau S T. Differential equation on Riemannian manifolds and their Geometric Apphcations [ J ]. Commu on Pure and Appl Math, 1975, 28:333 - 354.
  • 4Thierry Aubin, Nonlinear analysis on manifolds,Monge-Ampere equations [M]. Springer-Vedag, 1982.
  • 5Hebey E. Optical Sobolev inequalities on complete Riemanian manifolds with Ricci curvature bounded below and positive injectivity radius[J].Amer J Math, 1996, 118:291-300.
  • 6Li P, Schoen R. Lp and mean value properties of subharmonic functions on Riemannian manifolds [J]. Acta Math, 1984, 153:279-301.
  • 7Jost J. Riemannian Geometry and Geometric Ananlysis [M]. Springer, 1998.
  • 8Schoen R, Yau S T. Compact group' actions and the topology of manifolds with nonposifive curvature [J]. Topology, 1979, 18:361 -380.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部