期刊文献+

A Series of Variable Separation Solutions and New Soliton Structures of (2+1)-Dimensional Korteweg-de Vries Equation

A Series of Variable Separation Solutions and New Soliton Structures of (2+1)-Dimensional Korteweg-de Vries Equation
下载PDF
导出
摘要 Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.
作者 XU Chang-Zhi
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期403-406,共4页 理论物理通讯(英文版)
基金 The author would like to thank Profs. Jie-Fang Zhang and Chun-Long Zheng for helpful discussions.
关键词 variable separation approach (2+1)-dimensional KdV equation new soliton excitation 变量分离逼近 (2+1)维KdV方程 新孤波激发 理论物理 数学物理方法
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]S. Liu and D.L. Olson, Weld. J. 65 (1986) 139.
  • 2[2]D.J. Abson and R.J. Pargeter, Int. Met. Rev. 31 (19861) 141.
  • 3[3]O. Grong and A.O. Kluken, Key. Eng. Mater. 69-70 (1992) 21.
  • 4[4]J.C. Villafuerte and H.W. Keer, Weld. J. 69 (1990) 1.
  • 5[5]M. Malinowski-Brodnicka, G.Den. Ouden and W.J.P. Vink, Weld. J. 69 (1990) 52.
  • 6[6]J.G. Garland, Met. Constr and British Weld. J. 21 (1974) 121.
  • 7[7]H.K.D.H. Bhadeshia, L.E. Svensson and B. Gretoft, J. Mater. Sci. Lett. 4 (1985) 305.
  • 8[8]R.A. Ricks, P.R. Howell and G.S. Barritte, J. Mater. Sci. 17 (1982) 732.
  • 9[9]M.L. Turpin and J.F. Elliot, J. Iron. Steel. Inst. 204 (1966) 217.
  • 10[10]W.O. Philbrook, Int. Met. Rev. 22 (1977) 187.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部