期刊文献+

球空间S^(n+p)(c)中的紧致极小子流形

The Compact Minimal Submanifold in Sphere S^(n+p)(c)
下载PDF
导出
摘要 设Mn是常曲率空间S^(n+p)(c)中的紧致极小子流形,K和Q分别是M^n上每点各方向截面曲率和Ricci曲率的下确界,R是M^n的数量曲率.利用M^n的内在量Q,R和σ,给出球空间S^(n+p)(c)中的紧致极小子流形是全测地子流形的几个充分条件. Let M^n be an n- dimensional compact minimal sub- manifold in S^(n+p)(c) with constant curvature c. , let K and Q be the infimum of the sectional curvature and Ricci curvature of M^n respectively and let R be the scalar curvature of M^n and σ be the square of the length of the second fundamental form of M^n. The author obtains in this paper several sufficient conditions of M^n , which are the totally geodesic submanifold.
出处 《湖州师范学院学报》 2006年第2期20-22,共3页 Journal of Huzhou University
关键词 截面曲率 RICCI曲率 数量曲率 第二基本形式模长的平方 the sectional curvature Ricci curvature scalar curvature the square of the length of the second fundamental form
  • 相关文献

参考文献3

二级参考文献4

  • 1YauS.T.Submanifoldswithconstantcurvature(Ⅰ).Amer.Jour.ofMath,1974,(96):346-366
  • 2YauS.T.Submanifoldswithconstantcurvature(Ⅱ).Amer.Jour.ofMath,1975,(97):76-100
  • 3Chern, S. S. Do Carmo. M., Kobayashi. s., Minimal Submanifolds of a Sphere with Second Fundamental form of Constant Length, Shiing- Shen Chern Selected Papers,1978. Springer- Verlag, 393~409
  • 4纪永强.球空间 S^(n+p)(c)中的紧致极小子流形[J].数学杂志,1990,10(4):391-396. 被引量:8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部