摘要
设Mn是常曲率空间S^(n+p)(c)中的紧致极小子流形,K和Q分别是M^n上每点各方向截面曲率和Ricci曲率的下确界,R是M^n的数量曲率.利用M^n的内在量Q,R和σ,给出球空间S^(n+p)(c)中的紧致极小子流形是全测地子流形的几个充分条件.
Let M^n be an n- dimensional compact minimal sub- manifold in S^(n+p)(c) with constant curvature c. , let K and Q be the infimum of the sectional curvature and Ricci curvature of M^n respectively and let R be the scalar curvature of M^n and σ be the square of the length of the second fundamental form of M^n. The author obtains in this paper several sufficient conditions of M^n , which are the totally geodesic submanifold.
出处
《湖州师范学院学报》
2006年第2期20-22,共3页
Journal of Huzhou University
关键词
截面曲率
RICCI曲率
数量曲率
第二基本形式模长的平方
the sectional curvature
Ricci curvature
scalar curvature
the square of the length of the second fundamental form