期刊文献+

Szász型算子导数与光滑模的关系

An Equivalent Relation Between the Derivatives of Szasz Operators and the Modulus of Smoothness
下载PDF
导出
摘要 利用Ditzian-Totik光滑模ω'λ(f;t)研究了Szasz型算子线性组合导数与它所逼近的函数的光滑性之间的关系,得到Szasz型算子线性组合导数与Ditzian-Totik光滑模的等价定理。 In this paper, by using the Ditzian - Totik modulus ω′ψλ(f;t) we study the relationship between the derivatives of the linear combinations of the Szász- type operators and the smoothness of the function the linear combinations of the Szász - type operators approximates to. We've got the equivalent theorem between the derivatives of the linear combinations of the Szász- type operators and the Ditzian- Totik modulus.
作者 庄云标
机构地区 台州学院数学系
出处 《台州学院学报》 2006年第3期8-10,共3页 Journal of Taizhou University
关键词 Szász型算子线性组合 DITZIAN-TOTIK光滑模 导数 等价关系 the linear combinations of the Szász - type operators Ditzian - Totik modulus derivatives equivalent relation
  • 相关文献

参考文献2

二级参考文献9

  • 1[1]DITZIAN Z. Derivatives of Bernstein polynomials and smoothness[J]. Proc Amer Math Soc,1985,93:25-31.
  • 2[2]ZHOU D X. On smoothness characterized by Bernstein-type operators[J].J Approx Theory,1995,81:303-315.
  • 3[3]DITZIAN Z. Direct estimate for Bernstein polynomials[J].J Approx Theory,1994,79:165-186.
  • 4[4]DITZIAN Z,TOTIK V. Moduli of Smoothness[M]. New York:Springer-verlag,1987.
  • 5[5]BECKER M. An elementary proof of the inverse theorem for Bernstein polynomials[J]. Aequationes Math,1979,19:145-150.
  • 6[6]BECKER M, NESSEL R J. Inverse results via smoothing [A]. Constructive Function Theory, Proceeding of an International Conference(Blagoevgrad 1977) [C]. Sofia, 1980. 231-243.
  • 7[7]DITZIAN Z. A global inverse theorem for combinations of Bernstein polynomials[J]. J Approx Theory, 1979,26:277-292.
  • 8[8]ZHOU D X. On a paper of Mazhar and Totik[J]. J Approx Theory,1993,72:290-300.
  • 9M. Heilmann. Direct and converse results for operators of Baskakov-Durrmeyer type[J] 1989,Approximation Theory and its Applications(1):105~127

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部