摘要
本文构造了Cn空间中超球外的调和函数的展式,由此获得当n≥2时,超球外解析函数或多重调和函数v(z),若满足|v(z)|=o(1),z→∞,则v(z)=0;给出了超球上的解析函数的Dirichlet边值问题可解的充要条件.
In this paper, the expansion is obtained for harmonic function out of the unit ball in Cn. Using the result, we show that when n≥ 2, if u(z) is a analytic function or a pluriharmonic function out of the ball, if |u(z)|= o(1), z →∞, then u(z) ≡ 0, give the necessary and sufficient condition that the Dirichlet problem for theanalytic function on the unit ball is solvable.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1996年第6期22-25,共4页
Journal of Sichuan Normal University(Natural Science)
关键词
超球
调和函数
解析函数
边值问题
狄利克雷问题
Unit ball
Harmonic function
Pluriharmonic function
Dirichlet Problem for analytic function