期刊文献+

KNN查询处理算法性能研究 被引量:1

Performance Study of KNN Query Processing Algorithm
下载PDF
导出
摘要 KNN查询是多媒体数据库管理系统中最具代表性的查询方式之一,它将k个与查询点最接近的对象作为查询结果返回。对于树型多维索引结构,KNN查询处理算法主要有RKV算法和HS算法。本文针对这两种不同处理算法进行了性能研究,通过试验确定了算法的不同适用场景,最后就应用中的KNN查询实现给出了相应的建议。 KNN query is one of the most representative queries in multimedia database management system. It shows the result of k objects nearest to the query point. There are two different approaches: RKV algorithm and HS algorithm to processing KNN query for multidimensional index structures. In this paper, a performance study of the two different algorithms is presented. Computer simulation results and applicable situations for these two algorithms are also given. Finally some corresponding suggestions are given for applying it.
作者 刘灿 张德贤
出处 《苏州科技学院学报(自然科学版)》 CAS 2006年第3期73-77,共5页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 河南省科技攻关项目(0324220024) 河南工业大学科研基金项目(050105)
关键词 KNN查询 RKV算法 HS算法 KNN query RKV algorithm HS algorithm
  • 相关文献

参考文献5

  • 1Gisli R Hjaltason,Hanan Samet.Ranking in Spatial Databases[A].In:M J Egenhofer and J R Herring,editors.Advances in Spatial Databases,4th International Symposium[C].Portland,Maine:Springer,1995.83-95.
  • 2Nick Roussopoulos,Stephen Kelley,Frederic Vincent.Nearest Neighbor Queries[A].In:Michael J.Carey and Donovan A.Schneider.Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data[C].San Jose,California:ACM Press,1995.71-79.
  • 3Guttman A.R-trees:A Dynamic Index Structure for Spatial Searching[A].In:Beatrice Yormark.SIGMOD'84,Proceedings of Annual Meeting[C].Boston,Massachusetts:ACM Press,1984.47-57.
  • 4White D A,Jain R.Similarity indexing with the SS-tree[A].In:Stanley Y W Su.Proceedings of the Tweffth International Conference on Data Engineering[C].New Orleans,Louisiana:IEEE Computer Society,1996.516-523.
  • 5杨建武,陈晓鸥.半结构化数据相似搜索的索引技术研究[J].计算机学报,2002,25(11):1219-1226. 被引量:11

二级参考文献1

共引文献10

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部