摘要
针对分解的刚性大系统提出了组合RK-Rosenbrock方法,该方法分别采用Rosenbrock和显式RK方法在不同的处理机上并行求解刚性和非刚性子系统.讨论了算法的构造、收敛性以及数值稳定性,并在微机和多处理机上进行了数值仿真试验.
The combined Runge-Kutta with Rosenbrock methods are presented for a partitioned systems of stiffly large differential equations. Nonstiff and stiff subsystems are integrated in parallel on two processors by an explicit RK method and a Rosenbrock method respectively. Their construction, convergence and numerical stability are studied, and numerical simulation experiments are conducted on a personal computer and a parallel computer.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期51-58,共8页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金项目(10371044
400001041)
上海市基础研究重点项目(04JC1403)
上海市重点学科项目