摘要
利用Littlewood—Paley分解及变测度插值方法,研究了一类奇异积分算子TΩ,b的性质,得到了当1〈p,s〈∞,α∈R,q〉1,h∈L^∞(R^+),Ω∈Bq^0.0[S^(n-1)],和w∈Ap(R^-)时,TΩ,b为Fp^a,s(w)有界.
By using Littlewood-Paley decomposion and the interpolation of operators with change of measures, the properties of a class of singular integral operator TΩ,b are studied, and the boundedness of operator TΩ,b from Fp^a,s(w) to itself is proved when 1〈p,s〈∞,α∈R,q〉1,h∈L^∞(R^+),Ω∈Bq^0.0[S^(n-1)], and w∈Ap(R^-).
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2006年第5期481-484,506,共5页
Journal of Zhejiang University(Science Edition)
基金
浙江省教育厅科研项目(20050316)