期刊文献+

反函数的混合多项式逼近 被引量:2

Blended polynomial approximations to the inverse.
下载PDF
导出
摘要 给定一个在[0,α]上的单调函数λ=f(t),给出一个函数序列pm(λ)来逼近其反函数t=f-1(λ),其中pm(λ)不是一般的多项式函数,而是多项式和三角函数的混合,即pm(λ)∈Ωm=span{sint,cost,1,t,t2,…,tm-2},称这样的逼近为混合多项式逼近.利用Ωm中有一组标准正交基,即拟Legendre基,可以表示出pm(λ).通过比较可得,对于一些特定的函数,混合多项式逼近比以往的多项式逼近效果要好. Let λ= f(t) be a monotone function on [0,α], then a sequence of approximations Pm(λ) to the inverse t: f^-1(λ) is computed, where Pm(λ) is not a polynomial function, but a function of the blend of a polynomial function and a trigonometric function, that is Pm(λ)∈Ωm=span{sint,cos t,1,t,t^2,….t^(m-2)}. So the approximations are called blended polynomial approximations, Pm(λ) can be denoted as the standardized orthogonal basis of Ωm. Compared to the polynomial approximations, the blended polynomial approximations are more close to some of the inverse functions.
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2006年第5期507-509,513,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(60473130) 国家重点基础研究发展规划资助项目(2004CB318000)
关键词 拟Legendre基 拟Bernstein基 混合多项式逼近 反函数 Legendre-like basis Bernstein-like basis blend polynomial approximations inverse function
  • 相关文献

参考文献9

  • 1RIDA T F.Convergent inversion approximations for polynomials in Bernstein form[J].Computer Aided Geometric Design,2000,17(2):179-196.
  • 2LI Y M,HSU V Y.Curve offsetting based on Legendre series[J].Computer Aided Geometric Design,1998,15(7):711-720.
  • 3ECK M.Degree reduction of Bézier curves[J].Computer Aided Geometric Design,1993,10(4):237-251.
  • 4CHEN Q Y,WANG G Z.A class of Bézier-like curves[J].Computer Aided Geometric Design,2003,20(1):29-39.
  • 5HUANGYu WANGGuozhao.Constructing a quasi-Legendre basis based on the C-Bézier basis[J].Progress in Natural Science:Materials International,2005,15(6):559-563. 被引量:5
  • 6DAVIS P J.Interpolation and Approximation[M].New York:Dover Publications,1975.
  • 7SANCHEZ-REYES J.Inversion approximations for functions via s-power series[J].Computer Aided Geometric Design,2001,18(1):587-608.
  • 8SANCHEZ-REYES J.Applications of the s-power basis in geometry processing[J].ACM Transactions on Graphics,2000,19(1):27-55.
  • 9胡晴峰,汪国昭.双曲混合多项式形式的Ball曲线[J].浙江大学学报(理学版),2004,31(6):625-630. 被引量:7

二级参考文献11

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 2LiY.M,HsuV.Y.CurveoffsettingbasedonLegendrese ries[].ComputerAidedGeometricDesign.1998
  • 3EckM.LeastsquaresdegreereductionofBziercurves[].Computer Aided Design.1995
  • 4FaroukiR.T.Legendre Bernsteinbasistransformations[].Journalof ComputationalandAppliedMathematics.2000
  • 5FaroukiR.T.Convergentinversionapproximationsforpolynomials inBernsteinform[].ComputerAidedGeometricDesign.2000
  • 6ChenQ.Y,WangG.Z.AclassofB啨zier likecurves[].Com puterAidedGeometricDesign.2003
  • 7DavisP.J.InterpolationandApproximation[]..1975
  • 8WatkinsM,WorseyA.DegreereductionforBziercurves[].ComputerAidedDesign.1988
  • 9LachanceM.A.Chebysheveconomizationforparametricsurfaces[].ComputerAidedGeometricDesign.1988
  • 10EckM.DegreereductionofB啨ziercurves[].ComputerAidedGeo metricDesign.1993

共引文献10

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部