摘要
利用上、下解及单调迭代法考虑非线性分数阶扩散方程初值问题解的存在性和唯一性.
出处
《中国科学(A辑)》
CSCD
北大核心
2006年第9期1038-1044,共7页
Science in China(Series A)
同被引文献10
-
1庄平辉,刘发旺.空间-时间分数阶扩散方程的显式差分近似[J].高等学校计算数学学报,2005,27(S1):223-228. 被引量:15
-
2CHEN W, YE L, SUN H. Fractional diffusion equations by the Kansa method [ J ]. Computers and Mathematics with Applications, 2010, 59 (5) :1614 - 1620.
-
3MURIO D A. Implicit finite difference approximation for time fractional diffusion equations [ J ]. Computers and Mathematics with Applications, 2008, 56 (4) :1138 - 1145.
-
4CHARLES T, MARK M M, HANS-PETER S. A second-order accurate numerical approximation for the fractional diffusion equation [ J]. Journal of Computational Physics, 2006, 213( 1 ): 205 -213.
-
5CHEN C, LIU F, BURRAGE K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation [ J ]. Applied Mathematics and Computation, 2008, 198 (2) : 754 - 769.
-
6Chen W,Ye L,Sun H.Fractional diffusion equations by the Kansa method[J].Computers and Mathematics with Applica-tions,2010,59(5):1614-1620.
-
7Mickens E R.Nonstandard Finite Difference Models of Differential Equations[M].Singapore: World Scientific, 1994.
-
8金承日,潘有思.时间分数阶色散方程的有限差分方法[J].黑龙江大学自然科学学报,2011,28(3):291-294. 被引量:11
-
9金承日,李志.时间分数阶扩散方程的三次样条差分格式[J].黑龙江大学自然科学学报,2013,30(2):141-143. 被引量:1
-
10马亮亮.时间分数阶扩散方程的数值解法[J].数学的实践与认识,2013,43(10):248-253. 被引量:20