期刊文献+

TeI_4掺杂量对n型Bi_2Te_3基烧结材料热电性能的影响 被引量:10

Dependence of thermoelectric properties of n-type Bi_2Te_3-based sintered materials on the TeI_4 doping content
原文传递
导出
摘要 采用区熔法结合放电等离子体快速烧结(SPS)技术制备了n型Bi2Te3基热电材料.在300—500K的温度范围内测量了各热电性能参数,包括电导率(σ)、塞贝克系数(α)和热导率(κ),研究了掺杂剂TeI4的含量(质量百分比分别为0,0.05,0.08,0.10,0.13和0.15wt%)对热电性能的影响.结果表明试样的载流子浓度(n)随TeI4含量增加而增大,使电导率增大、塞贝克系数的绝对值先增大而后减小,从而导致品质因子(α2σ)呈先增加后降低的变化趋势;同时,由于异质离子(I-)以及载流子对声子的散射作用增强,可显著降低其晶格热导率.烧结材料的性能优值(ZT=α2σT/κ)对应于TeI4含量为0.08wt%有其最大值,约为0.92.此外,烧结材料的抗弯强度增加至80MPa左右,从而可以显著改善材料的可加工性以及元器件的使用可靠性. N-type ( Bi2Te3 )0.93 ( Bi2Se3 )0.07 thermoelectric materials doped with various content of Tel4 (0, 0.05, 0.08, 0.10, 0.15, and 0.15wt% ) have been fabricated through the combination of zone melting and spark plasma Sintering. Electrical conductivity (σ), Seebeck coefficient (α) and thermal conductivity (κ) were measured in the temperature range of 300--500K. The influence of the variation of TeI4 content on thermoelectric properties was studied. The increase of TeI4 content caused an increase of carrier concentration and thus resulted in an increase of σ and a decrease of α, and the lattice thermal conductivity was decreased by the increase of phonon scattering resulting from heterogeneous ion (I) scattering and carrier scattering. The maximum figure of merit ZT ( ZT = α^2 σT/κ ) of the sintered materials in the direction perpendicular to the pressing direction showed a value of 0.92 for the sample containing 0.08wt% TeI4 . In addition, the bending strength of the sintered materials was improved to about 80MPa from about 10MPa of the zone-melted ingot, which is of advantage to the fabrication process and the improvement of the reliability for thermoelectric modules.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第9期4849-4853,共5页 Acta Physica Sinica
基金 浙江省科技攻关计划项目(批准号:2006C31031)资助的课题.~~
关键词 BI2TE3 放电等离子体快速烧结 热电性能 Bi2Te3, spark plasma sintering, thermoelectric properties
  • 相关文献

参考文献22

  • 1Chen G,Dresselhaus M S,Dresselhaus G,Fleurial J P,Caillat T 2003 Inter.Mater.Rev.48 1
  • 2Sokolov O B,Skipidarov S Y,Duvankov N I 2000 J.Crystal Growth 236 181
  • 3Ettenberg M H,Maddux J R,Taylor P J,Jesser W A,Rosi F D 1997 J.Crystal Growth 179 495
  • 4Jiang J,Chen L D,Yao Q,Bai S Q,Wang Q 2005 Mater.Chem.Phys.92 39
  • 5Jiang J,Chen L D,Yao Q,Bai S Q,Wang Q 2005 J.Crystal Growth 277 258
  • 6Oh T S,Hyum D B,Kolomoets N V 2000 Scripta Mater.42 849
  • 7Pierrat P,Dauscher A,Lenoir B,Lopez R M,Scherrer H 1997 J.Mater.Sci.32 3563
  • 8Seo J,Park K,Lee D,Lee D 1997 Mater.Sci.Eng.B 49 247
  • 9吕强 荣剑英 赵磊 张红晨 胡建民 信江波.物理学报,2005,54:3321-3321.
  • 10Perrin D,Chitroub M,Scherrer S,Scherrer H 2000 J.Phys.Chem.Solid.61 1687

二级参考文献22

  • 1唐新峰.物理学报,2000,49:2460-2460.
  • 2Chen L D, TangX F, Goto T and Hirai T 2000 J. Mat. Res. 152276
  • 3Tang X F, Chen L D, Goto T and Hirai T 2001 J. Mat. Res. 16837
  • 4Klemens P G 1996 Proceedings of the 15 th International Conference on Thermoelectrics 206
  • 5Allen K and Hellman F 1999 Phys. Rev. B 60 11765
  • 6Guan Z D et al 1988 Physical Properties of inorganic materials (inChinese)[关振铎等1988版,无机材料物理性能]
  • 7Wu M W, Horing N J M and Cui H L 1996 Phys. Rev. B 54 5438
  • 8Sharp J W, Jones E C, Williams R K, Martin P H and Sales B C 1995 J. Appl. Phys. 78 1013
  • 9Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
  • 10Katsuyama S, Kanayama Y, ItoM, Majima K and Nagai H 2000 J.Appl. Phys. 88 3484

共引文献53

同被引文献121

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部