期刊文献+

高空穴浓度Mg掺杂InGaN外延材料性能的研究

Investigation of high hole concentration Mg-doped InGaN epilayer
原文传递
导出
摘要 采用金属有机物化学气相沉积方法生长得到具有不同Mg掺杂浓度InxGa1-xN(0≤x≤0.3)外延材料样品.对样品的电学特性和光学特性进行了系统的研究.研究发现在固定Mg掺杂浓度下,随In组分的提高,样品空穴浓度显著提高,最高达2.4×1019cm-3,Mg的活化效率提高了近两个数量级;通过对Mg掺杂InGaN(InGaNMg)样品的光致发光(PL)谱的分析,解释了InGaNMg样品的载流子跃迁机理,并确定了样品中Mg受主激活能和深施主能级的位置. We investigated the optical and electrical properties of Mg-doped In, Ga1-xN (0 ≤ x ≤ 0.3) grown by metalorganic chemical vapor deposition with different In and Mg contents. When the Mg doping concentration was fixed, the hole concentration of samples increased remarkably with the elevation of In mole fraction. The highest hole concentration achieved was 2.4 x 1019 cm-3 , the doping efficiency increased nearly by two orders. We explained the carrier transition mechanism with the help of the photoluminesce spectra. In addition, we obtained the activation energy of Mg and the band position of deep donor in InGaN : Mg samples.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第9期4951-4955,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60506012) 北京市教委重点项目(批准号:KZ200510005003) 北京工业大学博士科研启动基金(批准号:52002014200403)资助的课题.~~
关键词 Mg掺杂InGaN 高空穴浓度 光致发光 金属有机物化学气相沉积 InGaN : Mg, high hole concentration, photoluminesce, metalorganic chemical vapor deposition
  • 相关文献

参考文献16

  • 1Nakamura S,Fasol G 1997 The blue Laser Diode (Berlin:Springer)
  • 2Van de Walle CG,Stamp C,Neugebauer J et al 1998 J.Cryst.Growth 189/190 505
  • 3Kaufmann U,Kunzer M,Obloh H et al 1999 Phys.Rev.B 59 5561
  • 4Yamasaki S,Asami S,Shibata N et al 1995 Appl.Phys.Lett.66 1112
  • 5Kumakura K,Makimoto T,Kobayashi N 2000 J.Cryst.Growth 221 267
  • 6Kumakura K,Makimoto T,Kobayashi N 2003 J.Appl.Phys.93 3370
  • 7Lee S N,Sakonga T,Lee W et al 2004 J.Cryst.Growth 261 249
  • 8Kumakura K,Makimoto T,Kobayashi N 2001 Appl.Phys.Lett.79 2588
  • 9Takeuchi T,Hasnain G,Corzinea S 2002 Proceedings of SPIE 4646 555
  • 10Bosi M,Fornari R 2004 J.Cryst.Growth 265 434

二级参考文献34

  • 1Reynolds D C, Look D C, Jogai B and Molnar R J 1998 Solid State Commun. 108 49
  • 2Johnson C, Lin J Y, Jiang H X, Khan M A and Sun C J 1996 Appl. Phys. Lett. 68 1808
  • 3Smith M, Chen G D, Lin J Y, Jiang H X, Khan M A and Sun C J 1995 Appl. Phys. Lett. 67 3295
  • 4Klose M, Wieser N, Rohr G C, Dassow R, Scholz F and Off J 1008 J. Cryst. Growth. 189/190 634
  • 5Davydov V Y, Averkiev N S, Goncharuk I N, Nelson D K, Nikitina I P, Polkovnikov A S, Smirnov A N and Jacobson M A 1997 J. Appl. Phys. 82 10
  • 6Lee Q T, Yu Q, X Tang B T and Lee H Y 2001 Appl. Phys. Lett. 78 3412
  • 7Kim H, Kim D J, Park S J and Huang H 2001 J. Appl. Phys. 89 1506
  • 8Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87(3) 966
  • 9李志峰 陆卫 叶红娟 袁先章 沈学础 LiG ChuaSJ.物理学报,2000,49:1614-1614.
  • 10Sheu J K and Chi G C 2002 J. Phys:Condens.Matter 14 R657

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部