期刊文献+

微喷管流场及其推力性能数值模拟 被引量:4

Simulations of Flow Field and Thrust Performance in Micronozzle
下载PDF
导出
摘要 采用连续介质模型和分子运动模型系统地研究了二维微喷管内的流场及推力特性,重点考察了连续介质模型的适用性、微喷管工作条件和几何结构对流场结构和喷管性能的影响。研究结果表明,在努森数不大时,两种方法的结果基本符合。当努森数大于0.045时,连续介质模型与分子运动模型模拟结果差异较大。微喷管的推力和喉部雷诺数与喷管的入口压力、喉部宽度近似成线性变化;微喷管收缩角、扩张角给定时,其扩张段的长度仅影响推进性能,对流场结构影响较小。在喉部尺寸和扩张比一定时,扩张角为22度的微喷管推进性能最佳。 Both the continuum and kinetic models are applied to study flow field and thrust performance of 2D micronozzle in detail, with emphasizing on investigating the validity of continuum model, the effects of operating condition and configuration on micronozzle thrust performance, h is found that when Knudsen is less than 0. 0045, both continuum and kinetic models work to predict flow characteristics inside micronozzles. When Knudsen number exceeds 0. 0045, results of the continuum model obviously deviate from these of the kinetic. Thrust and Reynolds number of throat in micronozzle is appropriately linear with the inlet pressure and throat width. When the convergence and divergence angles of nozzle are fixed, thrust performance is affected by the length of divergence while the flow structure is not so sensitive. When the throat width and area ratio are given, the best divergence angle is 22°.
出处 《宇航学报》 EI CAS CSCD 北大核心 2006年第4期720-725,共6页 Journal of Astronautics
基金 国家自然科学基金(10372099)
关键词 微喷管 连续介质模型 分子运动模型 DSMC方法 推力性能 Micronozzle Continuum model Kinetic model DSMC method Thrust performance
  • 相关文献

参考文献11

  • 1Bayt R L.Analysis,Fabrication and Testing of a MEMS-Fabricated Micropropulsion System[D].Ph.D.Dissertation,MIT,Cambridge,MA,USA,1999
  • 2Choudhuri A R,Barid B,Gollahalli S R.Effects geometry and ambient pressure on micronozzle flow[J].AIAA paper 2001-3331
  • 3Brain Reed.Decomposing solid micropropulsion nozzle performance issues[J].AIAA paper 2003-0672
  • 4张根煙,蔡晓丹,刘明侯,陈义良.微尺度拉伐尔喷管冷态流场及其推进性能[J].推进技术,2004,25(1):54-57. 被引量:6
  • 5Alexeenko A,Collins R J,Gimelshein S F,Levin D A.Challenges of three-dimensional modeling of microscale propulsion devices with the DSMC method[C]// Proceedings of 22nd Symposium on Rarefied Gas Dynamics,Sydney,Australia,July 2000
  • 6Piekos E S,Breuer K S.Numerical modeling of micro-mechanical devices using the direct simulation monte carlo method[J].Journal of Fluids Engineering,1996,118:464-469
  • 7Markelov G N,Ivanov M S.Numerical study of 2D/3D micronozzle flows[C]// AIP Conference Proceedings,2001,585(1):539-546
  • 8Moran Wang,Zhixin Li.Numerical simulations on performance of MEMS-based nozzles at moderate or low temperatures[J].Microfluidics and Nanofluidics,2004,1:62-70
  • 9Gad-el-Hak M.The fluid mechanics of microdevices-the freeman scholar lecture[J].Journal of Fluids Engineering,1999,121:5-33
  • 10Bird G A.Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M].Oxford:Clarendon Press,1994

二级参考文献4

  • 1[1]Sutherland G S,Maes M E.A review of microrocket technology:10-6 to 1 lbf thrust[J].Journal of Spacecraft and Rockets,1966,3:1153~1165.
  • 2[2]Ho Chih-Ming,Tai Yu-chong.Micro-electro-mechanical-systems(MEMS) and fluid flows[J].Annu.Rev.Fluid Mech,1998,30:579~612.
  • 3[3]Kreith F.The MEMS handbook[ M ].Boca Raton:CRC Press,2002.
  • 4[4]Bayt R L.Analysis,fabrication and testing of a MEMS-based micropropulsion system [ D ] .Boston,USA:Dept.of Aeronautics and Astronautics,M.I.T,1999.

共引文献5

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部