摘要
自由漂浮空间机器人动力学方程不能被参数线性化并且存在模型不确定性,使得基于数学模型的控制问题变得十分复杂。本文研究了自由漂浮空间机器人的智能控制方法,提出了一个鲁棒的模糊神经网络控制器。首先利用模糊神经网络控制器来逼近理想控制器,然后利用鲁棒控制器对逼近误差进行估计和抑制。根据Lyapunov函数建立的新的网络学习算法保证了系统的稳定性。最后利用该控制器对平面二连杆空间机器人进行了研究。仿真结果表明该智能控制方案是有效的。
Due to the model uncertainties and impossibility of linear parameterization of its dynamics, the control of freefloating space robot based on mathematic model is difficult. In this paper, a robust fuzzy neural network (FNN) controller was proposed to deal with the problem. The FNN controller was designed to approximate an ideal controller, and the effect of approximation error was estimated and attenuated by a robust controller. A novel learning method established using Lyapunov function assured the stability of the system. Simulation results of a two-link planar free-floating space robot verify the validity of the proposed robust FNN controller in the presence of uncertainties.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2006年第4期730-734,共5页
Journal of Astronautics
关键词
空间机器人
模糊神经网络
智能控制
轨迹控制
Space robot
Fuzzy-neural network
Intelligent control
Tracking control