期刊文献+

二阶多点边值问题三个正解的存在性 被引量:2

Existence of Triple Positive Solutions for Second Order Multi-point Boundary Value Problem
下载PDF
导出
摘要 利用一个新的不动点定理,得到了二阶非线性n-点边值问题:u″(t)+f(t,u(t))=0,t∈(0,1)u′(0)=∑n-2i=1biu′(ξi),u(1)=∑ki=1aiu(ξi)-∑n-2i=k+1aiu(ξi)至少存在三个正解的一个充分条件,其中0<ξ1<ξ2<…<ξn-2<1,ai,bi∈[0,∞)且满足0<∑ki=1ai-∑n-2i=k+1ai<1,∑n-2i=1bi<1。 Based on new fixed point theorem, a sufficient condition of at least triple positive solutions for second order nonlinear n-point boundary value problems is obtained.u"(t)+f(t,u(t))=0,t∈(0,1),u'(0)=∑i=1n-1biu'(ξi),u(1)=∑i=1kaiu(ξi)-∑i=k+1n-2aiu(ξi),where 0〈ξ1〈ξ2〈…〈ξ0-2〈1,Ai,bi∈[0,∞)and satisfying 0〈∑i-1kai-∑i=k+1n-2ai〈1,∑i=1n-2bi〈1.
出处 《长沙交通学院学报》 2006年第3期83-86,共4页 Journal of Changsha Communications University
关键词 n-点边值问题 正解 不动点定理 n-point boundary value problems positive solution cone fixed point theorem
  • 相关文献

参考文献8

  • 1Avery R I,Peterson A C.Three positive fixed points of nonlinear operators on order Banach spaces[J].Computers Mathematics with Applications,2001,42:313 -322.
  • 2Ma R Y.Positive solutions for second-order three-point boundary value problems[J].Applied Mathematics Letters,2001,14:1-5.
  • 3Chen S H,Hu J,Chen L,et al.Existence results for-point boundary value problem of second order ordinary differential equations[J].Journal of Computational and Applied Mathematics,2005,180:425-432.
  • 4Liu B.Positive solutions of a nonlinear three-point boundary value problem[J].Computers Mathematics with Applications,2002,44:201 -211.
  • 5Chen S H,Zhang Q J,Chen L.Positive solutions for an n-point nonhomogeneous boundary value problem[J].Mathematical and Computer Modelling,2004,40:1 405 -1 412.
  • 6Ma R Y,Castaneda N.Existence of solutions of nonlinear m-point boundary value problem[J].Journal of Mathematical Analysis and Applications,2001,256:556-567.
  • 7余建辉.二阶多点边值问题正解的存在性[J].福州大学学报(自然科学版),2002,30(4):438-441. 被引量:4
  • 8郭大均.非线性泛函分析[M].济南:山东科学技术出版社,1985..

二级参考文献1

  • 1郭大均.非线性泛函分析[M].济南:山东科技出版社,1985..

共引文献45

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部