摘要
对非线性抛物方程考虑用P次多项式基得到半离散有限元方法的后验误差估计,这种误差估计是通过解局部抛物方程在每一个离散单元上用P+1次多项式对解进行校正而得到的,其中P+1次多项式在节点上为零.
A posteriori error estimate for semi-discrete finite element method using a pth degree polynomial basis is considered for nonlinear singular parabolic equations. The error estimate is obtained by solving local parabolic equations and correcting the solutions on each element using a p+ 1st degree polynomial, which is zero at the nodes.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期491-495,共5页
Journal of Inner Mongolia University:Natural Science Edition
关键词
后验误差估计
有限元方法
半离散近似
a posteriori error estimation
finite element method
semi-discrete approximation