期刊文献+

适应类别增量的决策树训练算法 被引量:1

Adaptive Algorithm for Class Incremental Induction of Decision Tree
下载PDF
导出
摘要 对于模式经常发生变化的客户资信评估、垃圾邮件检测和网络入侵检测等在线分类系统来说,自动感知客观存在的新类别,并让系统中的分类器对此作出自适应调整是其正确持续运行必须解决的问题。该文提出了一种适应新类别增加的决策树训练算法,该算法在新类别已检出的前提下,在原有决策树基础上利用新类别样本增量训练出新的决策树。实验结果表明:该文提出的算法可以较好地解决该问题,而与重新训练新决策树相比,它在分类器离线调整上较少的时间花费使其适用于在线分类系统。 In online classification system, such as credit evaluation, spare detection and intrusion detection, it is an important problem to detect the new pattern, and make the classifier to adapt for emerging pattern. Aiming at this problem, this paper proposes an incremental algorithm to train decision tree based on original computation and samples with new class. The result of experiment shows that the proposed algorithm can deal with incremental class and suit online classification system because of its little time cost.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第17期41-43,共3页 Computer Engineering
基金 教育部科学技术研究基金资助项目(02038) 南开大学亚洲研究中心基金资助项目(AS0405)
关键词 数据挖掘 类别增基 决策树 Dala mining Class increment Decision tree
  • 相关文献

参考文献6

  • 1Schlimmer J C,Fisher D.A Case Study of Incremental Concept Induction[C].Proceedings of the 5th International Conference on Artificial Intelligence,1986:496-501.
  • 2Utgoff P E.Incremental Induction of Decision Tree[J].Machine Learning,1989,4(2):161-186.
  • 3Utgoff P E,Berkman N C,Clouse J A.Decision Tree Induction Based on Efficient Tree Restructuring[J].Machine Learning,1997,29(1):5-41.
  • 4Yeung D Y,Chow C.Parzen-Window Network Intrusion Detectors[C].Proceedings of the 16th International Conference on Pattern Recognition,2002:385-388.
  • 5Lauer M.A Mixture Approach to Novelty Detection Using Training Data with Outliers[C].Proceedings of the 12th European Conference on Machine Learning,2001:300-311.
  • 6Liu Y,Gururajan S,Cukic B,et al.Validating an Online Adaptive System Using SVDD[C].Proceedings of the 15th International Conference on Tools with Artificial Intelligence,2003:384-388.

同被引文献11

  • 1宋锐,张静,夏胜平,郁文贤.一种基于BP神经网络群的自适应分类方法及其应用[J].电子学报,2001,29(z1):1950-1953. 被引量:19
  • 2Cuevas A, Febrero M, Fraiman R. Cluster Analysis : A Further Approach Based on Density Estimation. Computational Statistics and Data Analysis, 2001, 36(4) : 441 -459
  • 3Chang I, Loew M. Pattern Recognition with New Class Discovery// Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Maui, USA, 1991 : 438 -443
  • 4Chow C. Parzen-Window Network Intrusion Detectors//Proc of the 16th International Conference on Pattern Recognition. Quebec, Canada, 2002:385-388
  • 5Lauer M. A' Mixture Approach to Novelty Detection Using Training Data with Outliers//Proc of the 12th European Conference on Machine Learning. Freiburg, Germany, 2001 : 300 -311
  • 6Liu Yan, Gururajan S, Cukic B, et al. Validating an Online Adaptive System Using SVDD // Proc of the 15th International Conference on Tools with Artificial Intelligence. Sacramento, USA, 2003 : 384 - 388
  • 7Tax D M J, Duin R P W. Support Vector Data Description. Machine Learning, 2004, 54 ( 1 ) : 45 - 66
  • 8Ougiaroglou S, Nanopoulos A, Papadopoulos A N, et al. Adaptive k-Nearest-Neighbor Classification Using a Dynamic Number of Nearest Neighbors//Proc of the 11 th East-European Conference on Advances in Databases and Information Systems, Vama, Bulgaria, 2007 : 66 - 82
  • 9Krishnapuram B. Adaptive Classifier Design Using Labeled and Unlabeled Data. Ph. D Dissertation. Durham, USA : Duke University. Department of ECE, 2004
  • 10Zhou Dengyong, Bousquet O, Lal T N, et al. Learning with Local and Global Consistency// Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing System. Cambridge, USA: MIT Press, 2004, 16:321 -328

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部