期刊文献+

基于类扩张矩阵的信息系统特征选取 被引量:2

Feature Subset Selection of Information System Based on Similar Extension Matrix
下载PDF
导出
摘要 特征选取是一个NP-Hard问题。为了快速完成信息系统的一个最小特征选取,引入了类扩张矩阵的定义。通过类扩张矩阵的元素表示对象的差异,并利用逻辑上包含关系,有效浓缩类扩张矩阵。最后,以类扩张矩阵的统计信息为启发式信息,在浓缩类扩张矩阵中实现一个最小特征子集的快速求解。通过理论分析和实验,证明了该特征选取方法的高效性。 Feature selection is NP-Hard problem. In order to get a minimal feature subset of an information system, so-called Similar Extension Matrix(SEM) is defined to discriminate all objects by its elements, and then condensed to Condensed SEM(CSEM) by the included relation in logic. At Last, by means of the statistical values as heuristic information, a minimal feature subset is efficiently obtained in CSEM. The/heuristic algorithm of minimal feature subset selection is proved very efficient by theoretical analysis and experiment.
作者 李国和
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第17期52-54,79,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60473125) 中国石油(CNPC)石油科技中青年创新基金资助项目(05E7013)
关键词 信息系统 特征选取 启发式信息 扩张矩阵 Information system Feature selection Heuristic information Extension matrix
  • 相关文献

参考文献10

  • 1戴东亚 郑启伦 胡劲松等.一种基于粗糙集的混合特征选取方法.计算机科学,2001,28(5):95-97.
  • 2陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 3朱明,王俊普,蔡庆生.一种最优特征集的选择算法[J].计算机研究与发展,1998,35(9):803-805. 被引量:21
  • 4Kohavi R,Frasca B.Useful Feature Subsets and Rough Set Reducts[C].The 3th International Workshop on RoughSets and Soft Computing,1994.
  • 5李萌 魏长华.一种基于差异矩阵的属性简约算法.计算机科学,2002,29(9):403-406.
  • 6曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 7Gasca E,S(A)(A)nchez J S,Alonso R.Eliminating Redundancy and Irrelevance Using a New MLP-based Feature Selection Method[J].Pattern Recognition,2006,39(2):313-315.
  • 8Kononenko I,Hong S J.Attribute Selection for Modelling[J].Future Generation Computer Systems,1997,13(2/3):181-195.
  • 9Skowron A,Rauszer C.The Discernibility Matrices and Function in Information Systems[C].Proc.of Intelligent Decision Support-handbook of Application and Advances of Rough Set Theory.Kuwler Academic Publisher,1992:331-362.
  • 10洪家荣.示例学习的扩张矩阵理论[J].计算机学报,1991,14(6):401-410. 被引量:31

二级参考文献9

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2洪家荣,计算机学报,1989年,12卷,2期
  • 3洪家荣,Progress in Machine Language,1987年
  • 4洪家荣,1986年
  • 5洪家荣,Int J Comput Inform Sci,1985年,14卷,6期,421页
  • 6Wu X,A Heuristic Covering Algorithm for Extension Matrix Approach.Department of Artificial Intelligence,1992年
  • 7洪家荣,Proc Int Computer Science Conference’88, Hong Kong,1988年
  • 8洪家荣,Int Jnal of Computer and Information Science,1985年,14卷,6期,421页
  • 9洪家荣.示例学习的扩张矩阵理论[J].计算机学报,1991,14(6):401-410. 被引量:31

共引文献231

同被引文献29

  • 1万海平,何华灿.基于谱图的维度约简及其应用[J].山东大学学报(理学版),2006,41(3):124-127. 被引量:1
  • 2刘慧,马军,雷景生,连莉.基于特征域词频的邮件过滤方法的研究[J].山东大学学报(理学版),2006,41(3):134-138. 被引量:1
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4KOHAVI R, JOHN G H. Wrappers for feature subset selection[ J]. Artificial Intelligence, 1997 (1-2) :273-324.
  • 5LIU H, MOTODA H. Feature selection for knowledge discovery & data mining[ M ]. Boston : Kluwer Academic Publishers, 1998.
  • 6KIRA K, RENDELL L A. A practical approach to feature selection[ C ]//Proceedings of International Conference on Machine Learning. Aberdeen: Morgan Kaufman, 1992 : 249-256.
  • 7KIRA K, RENDELL L A. The feature selection problem: traditional methods and a new algorithm [C ]//Proceedings of the Tenth National Conference on Artificial Intelligence. Menlo Park: MIT Press, 1992: 129-134.
  • 8KONONENKO I. Estimating attributes: analysis and extension of RELIEF[ C ]//Proceedings of the European Conference on Machine Learning. New York. Springer, 1994 : 171-182.
  • 9Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of Relief and RReliefF [J].Machine Learning, 2003 (53) :23-69.
  • 10HUANG Y, MCCULLAGH P J, BLACK N D. Feature selection via supervised model construction [C ]//Proceedings of the Fourth IEEE International Conference on Data Mining. Washington: IEEE Computer Society, 2004: 411-414.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部