期刊文献+

一种基于密度树的网格快速聚类算法的研究 被引量:4

A Grid Fast Clustering Algorithm Based on Density-tree
下载PDF
导出
摘要 聚类算法是数据挖掘领域中一个非常重要的研究方向。人们已经提出了许多适用于大规模的、高维的数据库的聚类算法。基于密度的聚类算法是其中一个比较典型的研究方向。该文以CABDET算法为基础,提出了一种基于密度树的网格快速聚类算法,该算法将网格的原理运用到基于密度树的聚类算法中,有效地提高了聚类的效率,降低了I/O的开销。 Clustering algorithm is a very important research direction in data mining. So far, lots of clustering algorithms adapted to the large-scale and high-dimension data base have been proposed. The density-based algorithm is one of the typical researching directions. On the basis of CABDET algorithm, this paper presents a new algorithm called GFCABD. The new algorithm puts the theory of grid into the density-tree based clustering algorithm, thus improves the efficiency of clustering effectively and reduces the cost of I/O.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第17期69-70,85,共3页 Computer Engineering
基金 安徽省自然科学基金资助项目(050460402)
关键词 聚类 密度 网格 密度树 Clustering Density Grid Density-tree
  • 相关文献

参考文献2

二级参考文献5

  • 1Ester. M. Kriegel, H.-P, Sander, J.et al. A density-based algorithm for discovering clusters in large spatial databases withnoise. In:Simoudis. E.. Han J., Fayyad, U.M., eds. Proceedings of the 2nd InternationalConference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996.226-231.
  • 2Zhou. B. Cheung, D., Kao, B. A fast algorithm for density-based clustering. In:Zhong, N.. Zhou, L., eds. Methodologies for Knowledge Discovery and Data Mining, the 3rdPacific-Asia Conference. Berlin: Springer, 1999. 338~349.
  • 3Agrawal. R.. Gehrke J., Gunopolos, D., Raghavan, P. Automatic subspace clusteringof high dimensional data for data mining application. In: Haas, L.M.. Tiwary, A., eds.Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle.Washington, USA: ACM Press, 1998.94~105.
  • 4Schikuta. E. Grid clustering: an efficient hierarchical clustering method for verylarge data sets. In: Proceedings of the 13th International Conference on PatternRecognition. IEEE Computer Society Press, 1996. 101 ~105.
  • 5Ester. M. Kriegel, H.-P. Sander, J. et. al. Incremental clustering for mining in adata warehousing environment. In: Gupta, A.,Shmueli. O., Widom. J., eds. Proceedings ofthe 24th International Conference on Very Large Data Bases. New York: Morgan KaufmannPublishers Inc.. 1998. 323-333.

共引文献50

同被引文献41

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部