期刊文献+

基于概率模型和倒谱差分的特征补偿算法 被引量:1

Feature Compensation Method Based on Probability Model and Spectrum Difference
下载PDF
导出
摘要 在概率模型中,给出了引入倒谱预测值的动态相关性来进行特征补偿的方法。该方法采用期望最大化(EM)算法来估计联合分布参数,基于语音和噪声的先验概率密度,在倒谱域中对语音特征参数进行最小均方误差预测(MMSE),以提高语音识别精度。不同噪声环境和不同信噪比下的实验结果表明,该方法能有效地提高噪声环境下的中文连续语音识别的正确率。 The paper introduces a new feature compensation method which will induct the relativity of the prediction of spectrum based probability model in detail. The method evaluates the parameters of the joint distribution using the expectation maximizaton (EM) algorithm. The minimum mean squared error (MMSE) estimator for the speech feature parameters in spectrum-domain based the prior probability distribution is to enhance the correctness of speech recognition. The algorithm is tested in different poise and signal noise ratio (SNR). Subjective measure testifies that this method can increase the correctness of continuous speech recognition.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第18期200-201,205,共3页 Computer Engineering
基金 国家自然科学基金资助项目"电话信道自然语音语言辨识研究"(60372038)
关键词 语音识别 噪声抑止 倒谱差分 概率模型 Speech recognition Denoising Spectrum difference Prohability model
  • 相关文献

参考文献5

  • 1Kim H K,Rose R C.Cepstrum-domain Acoustic Feature Compensation Based on Decomposition of Speech and Noise for ASR in Noisy Environments[J].IEEE Trans.on Speech and Audio Processing,2003,11(5):435-446.
  • 2Neumeyer L,Weintraub M.Robust Speech Recognition in Noise Adaptation and Mapping Techniques[J].Signal Processing,1995:37(1-3):141-144.
  • 3Glotin H,Vergyri D,Neti C,et al.Weighting Schemes for Audio-visual Fusion in Speech Recognition[C].Proceedings of IEEE International Conference on Acoustics,Speech and Signal,Salt Lake City,2001.
  • 4Ephraim Y,Rahim M.On Second-order Statistics and Linear Estimation of Cepstral Coefficients[J].IEEE Transactions on Speech and Audio,1999,7(2):162-176.
  • 5Deng L,Droppo J,Acero A.A Bayesian Approach to Speech Feature Enhancement Using the Dynamic Cepstral Prior[C].Proc.of IEEE International Conference on Acoustics,Speech and Signal,2002:829-832.

同被引文献7

  • 1周静芳,陈一宁,刘加,刘润生.说话人识别信道补偿技术HNSSM[J].清华大学学报(自然科学版),2004,44(7):942-945. 被引量:2
  • 2Hennansky H. RASTA Processing of Speech[J]. IEEE Transactions on Speech and Audio Processing, 1994, 2(4): 578-589.
  • 3Quatieri T F, Reynold D A, O'Leary G D. Estimation of Handset Nonlinearity with Application to Speaker Recognition[J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 567-584.
  • 4Tohkura Y. A Weighted Cepstral Distance Measure for Speech Recognition[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(10): 1414-1422.
  • 5Assaleh K T, Mammone R J. New LP-derived Features for Speaker Identification[J]. IEEE Transactions on Speech and Audio Processing, 1994, 2(4): 630-638.
  • 6Menendez-Pidal X, Chen Ruxin, Wu Duanpei, et al. Compensation of Channel and Noise Distortions Combining Normalization and Speech Enhancement Techniques[J]. Speech Communication, 2001, 34(1/2): 115-126.
  • 7侯风雷,张万军,王炳锡.电话信道对语音信号参数影响的研究[J].信息工程大学学报,2002,3(1):5-7. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部