期刊文献+

严格伪压缩映像族隐格式迭代逼近不动点几何结果

Geometric results for implicit iteration process approximating common fixed points of strictly pseudocontractive mappings
下载PDF
导出
摘要 对非线性算子迭代序列逼近不动点过程的几何结构进行研究,在提出并证明了一个H ilbert空间中收敛序列的钝角原理基础上,应用这个钝角原理研究了严格伪压缩映像族的隐格式迭代序列逼近公共不动点的几何结构.并证明了相应的钝角原理.这个钝角原理表述了严格伪压缩映像族的隐格式迭代序列逼近公共不动点时与公共不动点集形成了钝角关系.这个钝角关系是使用相应内积序列的上极限表示的.事实上这个钝角结果的表述形式也是一个几何变分不等式,迭代序列的极限点即是这个几何变分不等式的解.一方面这个钝角结果表述了严格伪压缩映像族公共不动点隐格式逼近的几何过程,另一方面,这个钝角结果自然是隐格式迭代序列逼近严格伪压缩映像族公共不动点的必要条件. The purpose of this paper is to study the geometric structure of approximating process of the fixed points by iteration sequence for nonlinear mappings, first prove a obtuse angle principle of convergence sequence in Hilbert space, therefore, by this obtuse angle principle to study the geometric structure of approximating process of the common fixed points for strictly pseudocontractive mappings. The relevant obtuse angle principle is proved. This obtuse angle principle expresse the relationship between the iteration sequence and fixed points set of strictly pseudocontractive mappings and it is expressed by the superior limits of inner product sequence. In fact that, this obtuse angle principle is also a geometric variational inquality. The limit point of iteration process is the solution of this geometric variational inquality. On the one hand, this obtuse angle principle expresse the geometric process of approximation of implicit iteration sequence for strictly pseudocontractive mappings, on the other hand, it is also a necessary condition for the approximating process of common fixed points of strictly pseudocontractive mappings by implicit iteration process.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2006年第3期372-379,共8页 Pure and Applied Mathematics
基金 天津市学科建设基金资助项目(100580204)
关键词 HILBER空间 严格伪压缩映像 隐迭代格式 逼近不动点 几何结果 Hilbter space, strictly pseudocontractive mappings, implicit iteration, approximating common fixed points, geometric results
  • 相关文献

参考文献12

  • 1Goebel K,Reich S.Uiform convexity Hyperbolic Geometry and Non expansive Mappings,Monographs and Textbooks in Pure and Applied Mathematics[M].New York:Marcel Dekker,1984.
  • 2苏永福.非扩张映像不动点集与最佳逼近元[J].纺织高校基础科学学报,2004,17(1):32-35. 被引量:5
  • 3苏永福.非扩张映像不动点集与Ishikawa逼近过程的几何结构[J].天津师范大学学报(自然科学版),2004,24(4):56-59. 被引量:3
  • 4Browder F E,Petryshyn W V.Construction of fixed points of nonlinear map pings in Hilbert spaces[J].J.Math.Anal.Appl.,1967,20:197-228.
  • 5Hicks T L,Kubicek J R.On the Mann iterative process in Hilbert spaces[J].J.Math.Anal.Appl.,1977,59:498-504.
  • 6Maruster S.The solution by iteration of nonlinear equations[J].Prc.Amer.Math.Soc.,1977,66:69-73.
  • 7Osilike M O,Udomene A.Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type[J].J.Math,Anal.Appl.,2001,256:431-445.
  • 8Osilike M O.Strong and weak convergence of the Ishikawa iteration methods for a class of nonlinear equations[J].Bull.Korean,Math.Soc.,2003,37:117-127.
  • 9Rhoades B E.Comments on two fixed point iteration methods[J].J.Math.Anal.Appl.,1976,56:741-750.
  • 10Osilike M O,Aniagbosor S C,Akuchu B G.Fixed points of asymptotic ally demicontractive mappings in arbitrary Banach spaces[J].Pan.Amer.Math.J.,2002,12:77-88.

二级参考文献17

  • 1Deng L. A note on approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J]. J Math Anal Appl,1998,226: 245-250.
  • 2Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings[J]. Bull Amer Math Soc,1967,73:595-597.
  • 3Shioji N, Takahashi W. Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces[J]. Proc Amer Math Soc,1997,125:3 641-3 645.
  • 4Takahashi W. Nonlinear functional analysis[M]. Yokohama:Yokohama Publishers, 2000. 56-57.
  • 5Takahashi W, Tamura T. Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces[J]. J Approximation Theory,1997,91:386-397.
  • 6Takahashi W, Tamura T,Toyoda M. Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces[J]. Sci Math, Japon,2002,56: 475-480.
  • 7Wittmann R. Approximation of fixed points of nonexpansive mappings[J]. Arch Math,1992,58: 486-491.
  • 8Xu H K. Another control condition in an iterative method for nonexpansive mappings[J]. Bull Austral Math Soc,2002,65: 109-113.
  • 9Xu H K. Remarks on an iterative method for nonexpansive mappings[J]. Commun on Appl Nonlinear Anal,2003,10: 67-75.
  • 10Bauschke H H. The approximation of fixed points of compositions of nonexpansive mappings in Hilbert Spaces[J]. J Math Anal Appl, 1996,202:150-159.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部