摘要
MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that particles of both MgO and TiO2 powders become smaller rapidly, and then the costalline structures of MgO and TiO2 change significantly. MgTiO3 was observed by XRD after 30 hours of ball milling. Strong diffraction peaks of MgTiO3 were observed after 50 hours of ball milling. HRTEM observation proves that dense MgTiO3 ceramics with a compact crystalline structure can be sintered from rnechanochemically activated MgTiO3 precursor, the volume density of the resulting ceramie is as high aa 95% of the theoretical density, the porosity and average pore diameter of the ceramic are measured as 4.95% and 50 nm respectively, and the transverse strength exceeded 500 MPa.
MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that particles of both MgO and TiO2 powders become smaller rapidly, and then the costalline structures of MgO and TiO2 change significantly. MgTiO3 was observed by XRD after 30 hours of ball milling. Strong diffraction peaks of MgTiO3 were observed after 50 hours of ball milling. HRTEM observation proves that dense MgTiO3 ceramics with a compact crystalline structure can be sintered from rnechanochemically activated MgTiO3 precursor, the volume density of the resulting ceramie is as high aa 95% of the theoretical density, the porosity and average pore diameter of the ceramic are measured as 4.95% and 50 nm respectively, and the transverse strength exceeded 500 MPa.