摘要
重新初始化是使水平集函数保持符号距离函数的必要步骤。虽然它保证了水平集函数的稳定收敛,但是它也降低了曲线演化的速度。本文主要在该方面针对Chan-Vese提出的水平集图像分割模型进行了改进,提出了无需重新初始化的C-V模型。该模型将水平集函数与距离函数的偏差作为能量函数引入C-V模型,以此来约束水平集函数成为距离函数,提高了C-V模型的演化速度。同时该模型能够用一般的分段常数函数来定义初始水平集函数,即水平集函数不必初始化为符号距离函数。这样,对于不规则形状的初始轮廓,节省了初始化过程所消耗的时间。实验结果表明,本文所提出的模型不仅提高了C-V模型的演化速度,而且实现了水平集函数初始化的灵活性。
We propose a novel improved C-V model without re-initialization to segment objects in an image. We introduce the deviation of level set function from the signed distance function into the C-V model (i.e., active contours without edges) to keep approximately the level set function as a signed distance function during the curve evolution. Therefore, in our model, the time-consuming re-initialization procedure is not necessary and it thus speeds up the curve evolution and the segmentation. Moreover, the level set function can be flexibly initialized with a piecewise constant function rather than a signed distance function in practice. Thereby the consuming time to compute a signed distance function from an initial curve in irregular shape is saved. The numerical algorithm of our model is implemented using the finite difference scheme.
出处
《光电工程》
EI
CAS
CSCD
北大核心
2006年第9期52-58,共7页
Opto-Electronic Engineering