期刊文献+

基于自适应最近邻的局部线性嵌入算法 被引量:3

Locally Linear Embedding Algorithm Based on Adaptive Nearest Neighbor
下载PDF
导出
摘要 局部线性嵌入算法是一个优异的非线性维数约减方法,但是算法本身是一个无监督学习算法,对于有监督问题的学习效果不是很好。这主要是因为算法使用了K-近邻方法来求解最近邻点。针对这个缺点,提出了一种改进的、基于自适应最近邻法的局部线性嵌入方法,数值实验证明算法对于有监督的学习问题,具有较好的适应性。 Locally linear embedding is an efficient nonlinear dimensional reduction algorithm. Because the algorithm is an unsupervised learning algorithm, the effect that deal with the supervised learning problem is no good. The reason is that the algorithm searches the nearest neighbor points with K-nearest neighbor. An adaptive nearest neighbor locally linear embedding algorithm is proposed to overcome this shortage. Experiment results show that the algorithm adapts well the supervised learning problems.
出处 《控制工程》 CSCD 2006年第5期469-470,共2页 Control Engineering of China
基金 国家自然基金资助项目(10371131)
关键词 局部线性嵌入 自适应最近邻 有监督学习 locally linear embedding adaptive nearest neighbor supervised learning
  • 相关文献

参考文献7

  • 1Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(22):2323-2325.
  • 2Hastie T,Tibshirani R.Discriminant adaptive nearest-neighbor classification[J].IEEE Pattern Recognition and Machine Intelligence,1996,243(18):607-616.
  • 3Roweis S T,Saul L K.Think globally,fit locally unsupervised learning of nonlinear manifolds[R].Pennsylvania:University of Pennsylvania,2002.
  • 4Zhang J P,Li S Z.Adaptive nonlinear auto-associative modeling through manifold learning[C].PAKDD:LNAI,2005.
  • 5Hastie T,Tibshirani R,Friedman J.The elements of statistical learning-data mining[M].Springer:Inference and Prediction,2001.
  • 6谭璐,吴翊,易东云.稳健局部线性嵌入方法[J].国防科技大学学报,2004,26(6):91-95. 被引量:13
  • 7边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.

二级参考文献8

  • 1Jolliffe I T.Principal Component Analysis [M].Springer-Verlag,New York,1989.
  • 2Cox T,Cox M.Multidimensional Scalling [M].Chapman & Hall,London,1994.
  • 3Balakrishnama S,Ganapathiraju A.Linear Discriminant Analysis-A Brief Tutorial [A].Institute for Signal and information Processing,March 2,1998.Http://www.isip.msstate.edu/publications/reports/isipinternal/1998/lineardiscrimanalysis/ldatheory.pdf.
  • 4He X F,Niyogi P.Locality Preserving Projections (LPP) [R].Technical Report,TR-2002-09,Computer Science Department,the University of Chicago.
  • 5Roweis S T,Saul L K.Nonlmensionality Reduction by Locally Linear Embedding [J].Science,2000,290(22).
  • 6Bekin M,Niyogi P.Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [A].Advances in Neural Information Processing Systems 15,Vancouver,British Columbia,Canada,2001.
  • 7Roweis S T,Saul L K.Think Globally,Fit Locally: Unsupervised Learning of Nonlinear Manifolds [R].Technical Report MS CIS-02-18,and University of Pennsylvania,2002.
  • 8Donoho D L,Grimes C.Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-dimensional Data [R].Technical Report,Department of Statistics,Stanford University,2003.

共引文献154

同被引文献40

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部