期刊文献+

矩形微通道中流体流动阻力和换热特性实验研究 被引量:31

Experimental study on flow and heat transfer characteristics in rectangular microchannel
下载PDF
导出
摘要 以去离子水为流体工质,对其在矩形微尺度通道中的流动阻力和传热特性进行了实验研究。通过测量流量、进出口压力和温度等参数,获得了流体流过微通道时的摩擦阻力系数、对流换热过程中的热流通量和Nu等。微尺度通道中流体流动的摩擦阻力系数较常规尺度通道中的摩擦阻力系数小,仅是常规尺度通道中摩擦阻力系数的20%~30%;且流动状态由层流向湍流转捩的临界Re也远小于常规尺度通道的。微尺度通道中对流换热的Nu与常规尺度通道的显著不同。流量较小时,Nu较常规尺度通道中充分发展段的小;随着水流量的增加,微通道的Nu迅速增加,并很快超过常规尺度通道的Nu,表现出微尺度效应。热流通量对微尺度通道中对流换热Nu存在影响,其影响规律在不同流速条件下呈不同趋势,流速较小时,Nu基本保持不变;而在流速较大时,Nu随热流通量增加而呈增加趋势。 Flow and heat transfer characteristics in a rectangular microchannel were studied. All tests were performed with deionized water. The flow rate, pressures and temperatures at the inlet and outlet were measured. The friction factor, heat flux and Nusselt number were calculated. The friction factor in the microchannel is smaller than that in the conventional channel, usually only 20% - 30% of that of the convectional one. The critical value of Reynolds number below which the flow remains laminar flow in the microchannel is also smaller than that in the convectional channel. The Nusselt number in the microchannel is quite different from the convectional channel, usually smaller than that for the convectional channel when the flow rate is small. With the increase in flow rate, the Nusselt number increases significantly, exceeding the Nusselt number for the fully developed flow in the convectional channel and exhibiting a strong micro - scale effect. The Nusselt number is affected by the heat flux. The Nusselt number remains constant when the flow rate is small. The Nusselt number increases with the increasing in heat flux when the flow rate is large.
出处 《热科学与技术》 CAS CSCD 2006年第3期189-194,共6页 Journal of Thermal Science and Technology
基金 国家重点基础研究发展计划(2006CB300404) 教育部留学回国人员科研启动基金资助项目(6803001005) 东南大学科学基金资助项目(9203007013 9203001337)
关键词 微通道 流动特性 摩擦阻力系数 对流换热 microchannel flow characteristics friction factor convective heat transfer
  • 相关文献

参考文献6

  • 1TUCKERMAN D B,PEASE R F W.Hign-performance heat sinking for VLSI[J].IEEE Electron Device Letters,1981,2(5):126-129.
  • 2RAVIGURURAJAN T S,CUTA J,MCDONALD C E,et al.Single-phase flow thermal performance characteristics of a parallel micro-channel heat exchanger[C]∥ Proc of the ASME National Heat Transfer Division.New York:ASME,1996,7:157-166.
  • 3RAHMAN M M,GUI F.Expermental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate[C]∥ ASME EEP:Adv Electron Packaging.New York:ASME,1993:495-506.
  • 4HARM T M,KAZMIEREZAK M J,CERNER F M,et al.Experimental investigation of heat transfer and pressure drop through deep <100> silicon substrate[C]∥ Proc of the ASME Heat Transfer Division.New York:ASME,1997:347-357.
  • 5PFAHLER J,HARLAY J,BAU H.Gas and liquid flow in small channels in microtubes[C]∥ ASME DSC:Microstructures,Sensors and Actuators.New York:ASME,1991,32:123-134.
  • 6HARMS T M,KAZMIERCZAK M J,GERNER F M.Developing convective heat transfer in deep rectangular microchannels[J].Int J Heat and Fluid Flow,1999,20:149-157.

同被引文献238

引证文献31

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部