期刊文献+

株型对冬小麦冠层叶面积指数与植被指数关系的影响研究 被引量:12

Influence of plant geometry on relationships between LAI and VIs in wheat canopy
下载PDF
导出
摘要 利用PROSAIL模型和地面实测数据分别探讨了冠层株型特征对建立VIs-LAI拟合模型的影响,并基于Beer定律分析了消光系数KVI随株型的变化特征,其中共考虑了3种株型品种(披散型、中间型、紧凑型),VIs则选用了增强型植被指数(EVI)、归一化植被指数(NDVI)以及比值植被指数(RVI)。结果表明,不同VIs与LAI间的相关性程度会受到株型特征的影响,而同一株型内部VIs与LAI的相关性较混合株型好。不同植被指数比较,EVI-LAI相关关系受株型的影响较大,划分株型后其复相关系数R2可提高30%以上;而NDVI-LAI相关关系受株型的影响较小,并且这种影响仅在LAI<3时略有表现,可能与NDVI在较高LAI时的饱和有关;RVI-LAI相关关系对株型变化的反映则稍强于NDVI,且当株型趋于紧凑型时,其拟合模型有从指数型向直线型转化的趋势。此外消光系数KVI会随株型趋于紧凑而降低,3种植被指数的消光系数符合:KNDVI>KEVI>KRVI。 The variation of empirical LAI-VI relationship and the variation of the extinction coefficient (KVI) derived from Beer's law were analyzed by using PROSAIL model and canopy spectrum data across different canopy geometry varieties (erective varieties, middle varieties and horizontal varieties). Reflectance of blue (B) at 450 nm, red (R) at 670 nm, near infrared (NIR) at 830 nm were chosen to calculate 3 kinds of VIs (Normalized Difference Vegetation Index-NDVI, Ratio Vegetation Index-RVI, Enhanced Vegetation Index- EVI). The results showed that the relationships between VIs and LAI were affected by canopy geometries, and they should be developed separately for different geometry types. However, the influencing degrees of canopy geometries were different among NDVI, RVI and EVI. In particular, the EVI - LAI relationship could be improved significantly (R^2 increased over 30 % ) when canopy geometries were considered. The difference of NDVI - LAI relationship among different wheat geometries was slim and was displayed only when LAI was lower than 3. The RVI - LAI relationship was more sensitive than NDVI - LAI relationship. When the canopy geometry was erective, the estimated model of RVI and LAI could be changed from exponential form to linear form, and the value of extinction coefficient (KVI) would be reduced. It was also showed that the sequence of KVI was KNDVI 〉 KEv1 〉 KRVI. Therefore, the influence of canopy geometry structures should not be ignored in studying the relationship between LAI and VIs for different crop geometry varieties.
出处 《干旱地区农业研究》 CSCD 北大核心 2006年第5期130-136,共7页 Agricultural Research in the Arid Areas
基金 国家自然科学基金(40301035 40471093) 北京市自然科学基金(4042014)
关键词 冬小麦 株型 叶面积指数 消光系数 光谱植被指数 winter wheat canopy geometry LAI VIs KVI
  • 相关文献

参考文献15

  • 1Justice C O.Monitoring east African vegetation using AVHRR data[J].International Journal of Remote Sensing,1986,(6):1335-1372.
  • 2Baret F,Guyot G.Potential and limits of vegetation indices for LAI and APAR assessment[J].Remote Sensing of Environment,1991,(35):161-173.
  • 3Gardner B R,Blad B L.Evaluation of specal reflectance models to estimate corn leaf area while minimizing the influence of soil background effects[J].Remote Sensing of Environment,1986,(20):183-193.
  • 4Wiegand C L,Maas S J,Aase J K,et al.Multisite analyses of spectral-biophysical data for wheat[J].Remote Sensing of Environment,1992,(42):1-21.
  • 5Liu J,Chen J M,Park W M.A process-based boreal ecosystem productivity simulator using remote sensing inputs[J].Remote Sensing of Environment,1997,(62):158-175.
  • 6Huete A R,Liu H Q,Batchily K,et al.A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J].Remote Sensing of Environment,1997,(59):440-451.
  • 7Miura T,Huete A R,Yoshioka H,et al.An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction[J].Remote Sensing of Environment,2001,(78):284-298.
  • 8蒲瑞良 宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.8.
  • 9卢艳丽,李少昆,王纪华,谢瑞芝,黄文江,高世菊,刘良云,王之杰.冬小麦不同株型品种光谱响应及株型识别方法研究[J].作物学报,2005,31(10):1333-1339. 被引量:10
  • 10Jacquemoud S,Bacour C,Poilvé H,et al.Comparison of four radiative transfer models to simulate plant canopies reflectance-Direct and inverse mode[J].Remote Sensing of Environment,2000,(74):471-481.

二级参考文献14

  • 1张艳敏,李晋生,钱维朴,黄德明.小麦冠层结构与光分布研究[J].华北农学报,1996,11(1):54-58. 被引量:43
  • 2覃文汉,项月琴.植被结构及太阳/观测角度对NDVI的影响[J].环境遥感,1996,11(4):285-290. 被引量:11
  • 3Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Remote Sensing of Environment, 2001, 76: 349-359.
  • 4Derccer M F, Vanoijen M, Schapendonk A H C M, Pot C S, Rabbinge R. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy: impact on canopy photosynthesis. Annals of Botany, 2000, 86: 821-831.
  • 5Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 1995, 35: 1 400-1 405.
  • 6Hunter A H. Laboratory and Greenhouse Techniques for Nutrient Survey to Determine the Soil Amendments Required for Optimum Plant Growth. Mimeograph. Agro Service International, Florida, USA. 1980.
  • 7Penuelas J, Filella I, Biel C. The reflectance at the 950-970 nm region as an indicator of plant water status International Journal of Remote Sensing, 1993, 14: 1 887-1 905.
  • 8唐延林 王人潮 王秀珍 李云梅.Spectral analysis about leaf area index and composition of leaf in rice[J].华南农业大学学报:自然科学版,2003,1:4-7.
  • 9Stewart D W, Costa C, Dwyer L.M, Smith D L, Hamilton R I, Ma B L. Canopy structure, light interception, and photosynthesis in maize. Agronomy Journal, 2003, 95: 1 465-1 474.
  • 10田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333. 被引量:559

共引文献33

同被引文献117

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部