期刊文献+

基于独立分量分析的极化SAR图像的相干斑抑制

New speckle reduction method for polarimetric SAR image based on independent component analysis
下载PDF
导出
摘要 研究基于独立分量分析(ICA)的极化合成孔径雷达(SAR)图像相干斑抑制方法。该方法将极化SAR图像斑点噪声的乘积模型,变换为应用ICA的信号独立加噪模型。并且将HV/VV的比值图像,也作为ICA的输入数据。利用ICA的分离性,得到了分别对应于HH、HV和VV极化的三幅降噪图像。经本文方法处理后的图像,其相干斑噪声得到了有效的抑制,具有较高的等效视数,明显地改善了图像的质量。 Polarimetrie Synthetic Aperture Radar (SAR) images are usually corrupted by strong speckle noise, which blocks scene information abstracting and the application of polarimetric SAR images. Based on statistical formulation of polarimetric SAR image, a new approach for speckle reduction was presented using Independent Component Analysis (ICA). The experimental results show that excellent performance can be achieved: the image speckle noise is reduced effectively and the ENL is high, and the image quality is improved obviously,
作者 纪建 田铮
出处 《计算机应用》 CSCD 北大核心 2006年第10期2354-2356,2359,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60375003) 航空基础科学基金资助项目(03I53059)
关键词 独立分量分析 极化合成孔径雷达图像 相干斑抑制 Independent Component Analysis(ICA) polarimetric SAR image speckle reduction
  • 相关文献

参考文献11

  • 1PI Y-M,et al.Polarimetric Speckle Reduction Using Multi-Texture Maximum Likelihood Method[J].IEEE-lectronic Letter,UK,2003,39 (18):1348-1349.
  • 2杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 3FIORI S,PIAZZA F.A.General Class of ψ-APEX PCA Neural Algorithms[J].IEEE Transactions on Circuits and Systems-Part Ⅰ,2000,47,(9):1394-1398.
  • 4COSTA S,FIORI S.Image Compression Using Principal Component Neural Networks[J].Image and Vision Computing Journal (special issue on Artificial Neural Network for Image Analysis and Computer Vision),2001,19(9-10):649-668.
  • 5CHENG J,MILLER E.Model-based principal component techniques for detection of buried landmines in multiframe synthetic aperture radar images[A].2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'02)[C].2002.334-336.
  • 6CHEN CH,Zhan X.On the roles of independent component analysis in remote sensing[A].Proc.of Progress in Electromagnetics Research Symposium (PIERS'2000)[C].Cambridge (MA,USA),2000.
  • 7CHITROUB S,HOUACINE A,SANSAL B.Statistical characterisation and modelling of SAR images[J].Signal Processing,2002,82(1):69-92.
  • 8COMON P.Independence component analysis-a new concept.?[J].Signal Processing,1994,36:287-314.
  • 9HYVARINEN A.Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626 -634.
  • 10OLIVER C,QUEGAN S.Understanding Synthetic Aperture Radar Images[M].Artech-House,London,1998.

二级参考文献3

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..

共引文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部