期刊文献+

一种基于距离的再聚类的离群数据发现算法 被引量:4

Algorithm of finding Outlier for reclustering based on distance
下载PDF
导出
摘要 通过研究基于离群距离的数据发现(Cell-Based)算法的识别、分析和评价算法,指出了其优越性和不足,提出一种新的离群数据发现算法——基于距离的再聚类离群数据发现算法。理论分析和仿真结果表明,该算法有效地克服了传统的基于距离的数据发现算法易于随参数变化而需要调整单元结构,以及只适用于维度不高的离群数据发现等的缺点,并有效地避免了由于随机初始值选取导致不同的离群数据发现结果问题,同时也有较快的收敛速度。 The identifying, analyzing and evaluating algorithm of finding distance-based Outlier (Cell-Based) was firstly studied, and its advantages and disadvantages were pointed out. And then, a new Outlier finding algorithm-algorithm of finding Outlier for reclustering based on distance was proposed. Theoretical analysis and experimental results show that this algorithm can not only effectively overcome the faults of traditional Cell-Based algorithm, i.e. need to be recomputed from scratch for every change of the parameters, and only suitable for finding the Outlier of low dimension, but also obviously avoid the problems caused by randomly selecting initial value to produce different finding results of Outlier at higher convergence speed.
出处 《计算机应用》 CSCD 北大核心 2006年第10期2398-2400,共3页 journal of Computer Applications
关键词 聚类 距离 离群数据 cluster distance Outlier
  • 相关文献

参考文献6

  • 1KNORR E,NG R.Algorithms for mining distance-based outliers in large datasets[A].Proc.of the 24 VLDB Conference[C].New York,USA,1998.392-403.
  • 2KNORR E,NG R.A Unified approach for mining outliers:properties and computation[A].Proc.of 1997 IntConf Knowledge Discovery and Data Mining(KDD97)[C].Newport Beach Califomia,1997.219-222.
  • 3KNORR E,NG R.Finding in tensional knowledge of distance-based[A].Proc.of the 25th VLDB Conference Edinburgh[C].ScOdand.1999.21 1-222.
  • 4HAN J,KANLBER M.Data Mining:Concepts and Techniques[A].Copyright by Morgan Kaufmann Publishers[C].Inc,2001.
  • 5史东辉,张春阳,蔡庆生.离群数据的挖掘方法研究[J].小型微型计算机系统,2001,22(10):1234-1236. 被引量:16
  • 6高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100

二级参考文献27

  • 1[1]Knorr E,Ng R. Algorithms for mining distance-based outliers in large datasets[C]. In:Proc. of the 24th VLDB Conference.New York,USA,1998.392~403
  • 2[2]Knorr E , Ng R. A Unified approach for mining outliers:properties and computation[C]. In: Proc. of 1997 Int Conf. Knowledge Discovery and Data Mining(KDD'97),Newport Beach,California, 1997.219~222
  • 3[3]Knorr E ,Ng R. Finding intensional knowledge of distance-based[C]. In:Proc. of the 25th VLDB Conference.Edinburgh,Scotland,1999.211-222
  • 4[4]Barnett V and Lewis T. Outliers in statistical data[M]. New York:John Wiley &Sons,1994
  • 5[5]Arning A, Agrawal R , Raghavan P .A linear method for deviation in large database[C]. In :Proc. of Int. Conf. Data Mining and Knowledge Discovery(KDD96),Portland,1996. 164~169
  • 6高新波,IEEE ISPACS’98,1998年,387页
  • 7Yang M S,Fuzzy Sets Systems,1997年,91卷,3期,319页
  • 8Chen S W,IEEE Signal Processing,1997年,45卷,11期,2639页
  • 9高新波,Proc of ICSP’96,1996年,1269页
  • 10Yang M S,Fuzzy Sets Systems,1996年,84卷,49页

共引文献114

同被引文献66

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部