期刊文献+

一种新颖的CRE用户评论信息抽取技术 被引量:2

Novel technology of customer review extraction
下载PDF
导出
摘要 准确挖掘商务网站中的用户评论对于商家进行有效的推荐具有重要意义。提出了一种新颖的用户评论抽取(CRE)算法进行评论信息的抽取。该算法采用了页面分块与信息熵的迭代计算技术实现了评论块的自动发现与抽取。实验结果证明了该算法具有较高的查全率与查准率。 Mining the customer reviews accurately in commercial websites has significant meaning in effective recommendation for trade company. A kind of novel algorithm-Customer Review Extraction (CRE) was put forward in this paper. CRE iterafively segments page and calculate the information entropy to automatically discover and extract the reviews. The experimental result has proved that the algorithm has higher recall and precision.
出处 《计算机应用》 CSCD 北大核心 2006年第10期2509-2512,共4页 journal of Computer Applications
基金 江苏省自然科学基金项目资助项目(BK2005046)
关键词 用户评论抽取 信息抽取 基于视觉的页面分块 Customer Review Extraction(CRE) information extraction Vision-based Page Segmentation(VIPS)
  • 相关文献

参考文献10

  • 1CHAKRABARTI S.Mining the web:Discovring knowledge from hypertext data[M].Morgan Kanfmann Publishers,2002.
  • 2HAN J,CHANG KCC.Data mining for web intelligence[J].IEEE Computer,Nov.2002.
  • 3KUSHMERICK N,WELD D,DOORENBOS R.Wrapper induction for information extraction[J].IJCAI-97,1997.246-247.
  • 4HSU C-N,DUNG M-T.Generating finite-state transducers for semistructured data extraction from the Web[J].Information Systems.1998,23(8):521-538.
  • 5CHAKRABARTI S,PUNERA K.Accelerated focused crawling through online relevance feedback[A].In Proceedings of the eleventh international conference on World Wide Web (WWW2002)[C].2002.148-159.
  • 6CHEN J,ZHOU B,SHI J,et al.Function-Based Object Model Towards Website Adaptation[A].In Proceedings of the 10th International World Wide Web Conference[C].2001.587 -596.
  • 7CHAKRABARTI S.Integrating the Document Object Model with hyperlinks for enhanced topic distillation and information extraction[A].In the 10th International World Wide Web Conference[C].2001.211-220.
  • 8CAI J-RWD,YU S,MA W-Y.Extracting content structure for web Pages based on visual representation[A].In Proc.5th Asia Pacific Web ConfP[C].Xi'an,China,2003.928-937.
  • 9http://www.comp.nus.edu.sg/~ dm2,2006.
  • 10LIU B,GROSSMAN R,ZHAI Y.Mining Data Records in Web Pages[Z].ACM1-58113,2000.

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部