期刊文献+

负载氧化镧的活性炭还原NO的研究 被引量:3

Reduction of NO by La_2O_3-loaded activated carbon
下载PDF
导出
摘要 稀土金属具有一些特殊的性能,这使得其对碳质材料还原NO的反应可能表现出特殊的催化效果,而此方面的研究没有报道。为了研究稀土金属对活性炭还原NO反应的催化效果,采用浸渍法制备了负载氧化镧的活性炭颗粒(La/C),并在无氧的固定床反应器中进行了程序升温反应和等温反应,考察了气体流量、NO的入口浓度、反应温度和氧化镧负载量对反应活性的影响,同时对反应机理和动力学进行了初步探讨。研究结果表明负载氧化镧的活性炭还原NO的反应是一级反应。由于炭表面3%(质量分数)的氧化镧的存在,C-NO反应的起始反应温度从500℃降低到300℃,反应活性大大提高,反应活化能从88.95kJ/mol降低到51.05kJ/mol。氧化镧的负载量对反应活性有重要影响,但负载量的大量增加对反应活性的提高效果甚微,最佳负载量为1.5%。La/C体系在反应中较稳定,而反应温度的升高对其稳定性不利。 The La2O3-loaded activated carbon granules (La/C) were prepared by impregnation. Temperature programmed reaction and isothermal reaction in fixed bed reactor in the absence of oxygen were employed to explore the mechanism and kinetics of NO reduction in La/C. Comparative runs were performed to determine the effects of gas flow rate, concentration of NO, reaction temperature and loading of La2O3. The experimental data was well represented by the first order kinetics model. With 3 % (w/w) loading of La on the activated carbon, NO reduction began at a lower temperature of 300℃ (from 500℃ with no metal), the calculated activation energy was lowered to 51.1 kJ/mol (from 88.9 kJ/mol), and the reactivity increased substantially. Data also demonstrated that La/C was a better catalyst than the Ca/C prepared in a similar manner. The NO removal increased with increasing reaction temperature and/or % of La2O3 loading; the reduction at 400-500 C with 1.5% loading was most cost effective. The La/C treatment was stable; however, the stability decreased quickly as the reaction temperature went above 500℃.
出处 《环境污染与防治》 CAS CSCD 北大核心 2006年第9期676-679,共4页 Environmental Pollution & Control
关键词 一氧化氮 活性炭 催化还原 稀土金属 氧化镧 Nitrous oxide Activated carbon Catalytic reduction Rare earth metal Lanthanum oxide
  • 相关文献

参考文献10

  • 1Kuehn N D.Retrofit control technology reducing NOX emission[J].Power Engineering,1994,98:23-27.
  • 2Aarna I,Suuberg E M.A review of the kinetics of the nitric oxide-carbon reaction[J].Fuel,1997,76(6):475-491.
  • 3Tomita A.Suppression of nitrogen oxides emission by carbonaceous reductants[J].Fuel,Processing Technology,2001,71:53-70.
  • 4Bueno-Lopez A,Garcia-Garcia A.Low-cost potassium-containing char briquettes for NOX reduction[J].Energy&Fuels,2002,16:997-1003.
  • 5Gupta H,Benson S A.Pilot-scale studies of NOX reduction by activated lignite high-sodium lignite chars:a demonstration of the CARBONOX process[J].Ind.Eng.Chem.Res.,2004,43:5820-5827.
  • 6Chan L K,Sarofim A F,Beer J M.Kinetics of the NO-carbon reaction at fluidized bed combustor condition[J].Combustion and Flame,1983,52:37-45.
  • 7唐浩,钟北京.CaO对煤焦还原NO的催化作用[J].工程热物理学报,2003,24(6):1058-1060. 被引量:5
  • 8高志明,赵震,杨向光,吴越.CuO/活性炭和Fe_2O_3/活性炭催化还原NO[J].应用化学,1996,13(4):77-79. 被引量:7
  • 9Illan-Gomez M J,Brandan S,Linares-Solano A.Improvements in NOX reduction by carbon using bimetallic catalysts[J].Fuel,2001,80:2001-2005.
  • 10Kaptein F,Meirop A J C,Abbel G,et al.Reduction of NOX over alkali metal-carbon systems[J].J.Chem.Soc.,Chem.Commun.,1984,16(15):1085-1086.

二级参考文献5

  • 1施卫伟 钟北京.煤和煤焦还原NOX的实验研究:[学士论文].北京:清华大学,1997.
  • 2Chen W Y, Ma Long. Effect of Heterogeneous Mechanisms During Reburing of Nitrogen Oxide. AIChE Journal, 1996, 42(7): 1968-1975.
  • 3Hiromi Yamashita, Hajime Yamada, Akira Tomita. Reaction of Nitric Oxide with Metal-Loaded Carbon in the Presence Oxygen. Applied Catalysis, 1991, 78:L1-L6.
  • 4T D Hengel, P L Walker Jr. Catalysis of Lignite Char Gasification by Exchangeable Calcium and Magnesium.Fuel, 1984, 63(9): 1214-1220.
  • 5施卫伟 钟北京.[D].北京:清华大学,1997.

共引文献9

同被引文献23

  • 1冯治宇,胡筱敏,孙铁珩,康平利.新型烟气脱硫脱氮吸附催化剂的制备[J].中南大学学报(自然科学版),2005,36(1):78-81. 被引量:1
  • 2沈伯雄,郭宾彬,吴春飞,梁才,王成东,史展亮.MnO_X/ACF低温选择性催化还原烟气中的NO[J].环境污染与防治,2006,28(11):801-803. 被引量:14
  • 3路培,李彩亭,曾光明,翟云波,刘涛,牛一乐.负载稀土元素活性碳纤维在微型反应器中净化NO废气[J].化工环保,2006,26(6):455-458. 被引量:9
  • 4路培,李彩亭,曾光明,翟云波,刘涛.ACF负载稀土元素在微型反应器中净化NO的研究(Ⅱ)[J].湖南大学学报(自然科学版),2007,34(3):67-70. 被引量:4
  • 5SA J,GROSS S,VINEK H. Effect of the reducing step on the properties of Pd-Cu bimetallic catalysts used for denitration [J]. Applied Catalysis A,2005,294(2) :226-234.
  • 6ISHIHARA A, WANG D H, DUMEIGNIL F, et al. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process[J]. Applied Catalysis A:General,2005,279(1/2) :279-287.
  • 7RODRIGUEZ J A, JIRSAK T, KIM J Y, et al. Interaction of NO and NO2 with MgO(100) : photoemission and density-functional studies[J]. Chem. Phys. Lett. , 2005,330(3/4) :475-483.
  • 8RUCKENSTEIN E, WANG H Y. Effect of calcination conditions on the species formed and the reduction behavior of the cobalt-magnesia[J]. Catalysis Letters, 2000,70(1/2) : 15-21.
  • 9GASSER M S, MORAD G A, ALY H F. Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents[J]. Journal of Hazardous Materials, 2007,142(1/2) : 118-129.
  • 10GLINSKR M, WOLSKI R. Catalytic hydrogen transfer over magnesia,ⅩⅦ. Hydrocarbons as hydrogen donors[J]. React. Kinet. Catal. Lett. ,2001,73(1) :21-26.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部