期刊文献+

Block Entanglement in the Single-Hole Hubbard Model

Block Entanglement in the Single-Hole Hubbard Model
下载PDF
导出
摘要 We investigate the distribution of the entanglement of the one-dimensional single-hole Hubbard model (HM) and study the relationship between the entanglement and quantum phase transition in the model. The von Neumann entropy of a block with neighbouring spins L for a single-hole HM is calculated using the densitymatrix renormalization group. The distributions of the entanglement entropy in the ground state, as a function of block length, show a dramatic effect, i.e. effectively decoupling with the centres, no matter how the Coulomb interaction u 〉0 or u 〈0. Contrarily, for the Coulomb interaction u = 0 or close to zero, the entanglement entropy in the single-hole model reaches a saturation value for a certain block size. For a fixed size L = 40, the ground state entanglement entropy measure, as a function of u1 shows a peak corresponding to the critical quantum phase transition. We investigate the distribution of the entanglement of the one-dimensional single-hole Hubbard model (HM) and study the relationship between the entanglement and quantum phase transition in the model. The von Neumann entropy of a block with neighbouring spins L for a single-hole HM is calculated using the densitymatrix renormalization group. The distributions of the entanglement entropy in the ground state, as a function of block length, show a dramatic effect, i.e. effectively decoupling with the centres, no matter how the Coulomb interaction u 〉0 or u 〈0. Contrarily, for the Coulomb interaction u = 0 or close to zero, the entanglement entropy in the single-hole model reaches a saturation value for a certain block size. For a fixed size L = 40, the ground state entanglement entropy measure, as a function of u1 shows a peak corresponding to the critical quantum phase transition.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第9期2352-2355,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10574048.
关键词 QUANTUM RENORMALIZATION-GROUPS PHASE-TRANSITION ENTROPY QUANTUM RENORMALIZATION-GROUPS PHASE-TRANSITION ENTROPY
  • 相关文献

参考文献29

  • 1Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press).
  • 2Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 0:32110.
  • 3Osterloh A et al 2002 Nature 416 608.
  • 4Vidal Get al 2003 Phys. Rev. Lett. 90 227902.
  • 5Verstraete F, Popp M and Cirac J I 2004 Phys. Rev. Lett. 92 027901.
  • 6Gu S Jet al 2004 Phys. Rev. Lett. 93 086402.
  • 7Anfossi A, Boschi C D E, Montorsi A and Ortolani F Preprint cond-mat/0503600.
  • 8Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 25044.
  • 9Larsson D and Johannesson H 2005 Phys. Rev. Lett. 95196406.
  • 10Levine G C 2004 Phys. Rev. Lett. 93 266402.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部