期刊文献+

基于FLANN的称重传感器动态补偿方法 被引量:3

Dynamical compensating method for weighting sensor based on FLANN
下载PDF
导出
摘要 为满足快速称重的要求,结合遗传算法寻优速度快和函数联接型神经网络(FLANN)有较强的函数逼近能力的优点,设计了一种基于遗传算法优化的FLANN补偿器,实现对称重传感器的动态特性补偿。采用遗传算法优化FLANN的连接权值。仿真表明:阶跃响应时间快,且超调量小,有效地提高了称重传感器的动态响应过程,且方法简单,易于工程实现,具有实用价值。 A dynamical compensating device for Weighting Sensor is designed based on genetic algorithms (GA) and functional link artificial neural network(FLANN) ,in order to meet the demands of rapid weighing,combining the advantage of fast searching optimization of genetic algorithms and the advantage of better functional following of FLANN. Genetic algorithms is used to search the optimal link weights of FLANN. The simulation shows that the time of the step response and overshoot are reduced. The dynamical respond of the weighing sensor is approved effectively. And due to its simple algorithm can easily be realized, it has the practical value in practice.
作者 黄杭美
出处 《传感器与微系统》 CSCD 北大核心 2006年第8期25-28,共4页 Transducer and Microsystem Technologies
关键词 称重传感器 动态补偿 函数联接型神经网络 遗传算法 weighting sensor dynamical compensation functional link artificial neural network ( FLANN ) : genetic algorithm
  • 相关文献

参考文献7

  • 1Bfignell J B. Software techniques for sensor compensation [ J ].Sensors & Actuators, 1991, A25 ( 27 ) :37 - 41.
  • 2刘清.神经网络和遗传算法相结合实现非线性传感特性的线性化[J].南京师范大学学报(工程技术版),2002,2(3):11-15. 被引量:4
  • 3俞阿龙.遗传算法结合FLNN实现加速度传感器动态特性补偿[J].计量学报,2005,26(4):347-350. 被引量:7
  • 4Prtra J C,Pal R N. A functional link artificial neural network for adaptive channel equalization [ J ]. Signal Processing, 1995,43(2) :181 - 195.
  • 5Prtra J C. An artificial neural network based smart capacitive pressure sensor[ J ]. Measurement, 1997,22 (3 -4 ) : 113 - 121.
  • 6Denpsey G L, Alig J S. Control Sensor Linearization using Artificial Neural Net-work [ J ]. Analog Integrated Circuits and Signal Processing. 1997,13 ( 3 ) :321 - 322.
  • 7Pasquale Arpaia,Pasquale Daponte,Domcaico Grimaldi,et al. ANN-Based Error Reduction for Experimentally Modeled Sensors [ J ].IEEE Trans. on Instrumentation and Measurement,2002,51 ( 1 ) :23 - 30.

二级参考文献12

  • 1刘清.神经网络和遗传算法相结合实现非线性传感特性的线性化[J].南京师范大学学报(工程技术版),2002,2(3):11-15. 被引量:4
  • 2陈波,胡念苏,周宇阳,申,赵瑜.汽轮机组监测诊断系统中虚拟传感器的数学模型[J].中国电机工程学报,2004,24(7):253-256. 被引量:24
  • 3冯之敬,刘金凌,潘尚峰,王先逵,袁哲俊.测量与控制系统中非线性特性的不失真线性化方法[J].清华大学学报(自然科学版),1996,36(8):18-23. 被引量:11
  • 4[2]Antonio B,Gaetano C. Optimal design of multivariate sensor[J]. Measure Sci and Tech. 1994,4(5):319~322.
  • 5[4]Dempsey G 1, Alig J S, et al. Control Sensor Linearization using Artificial Neural Net-work[J ]. Analog Integrated Circuits and Signal Processing. 1997,13(3):321~322.
  • 6[7]Vladik K. Genetic Algorithms: What Fitness Scaling is Optimal[M]. Cybernetic and System , 1993(24), 9~26.
  • 7金篆苌 王明时.现代传感器[M].北京:电子出版社,1995..
  • 8Brignell J B. Software techniques for sensor compensation[ J]. Sensors & Actuators, 1991, A25(27): 37 ~ 41.
  • 9Prtra J C, Pal R N. A functional link artificial neural networkfor adaptive channel equalization [ J ]. Signal Processing, 1995, 43(2): 181 ~ 195.
  • 10Prtra J C. An artificial neural network based smart capacitive pressure sensor[J]. Measurement, 1997, 22(3 - 4): 113 ~ 121.

共引文献9

同被引文献15

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部