期刊文献+

凸体的p次径向平均体的几个性质 被引量:2

Several Properties of the Radial pth Mean Bodies of Convex Bodies
下载PDF
导出
摘要 本文证明了凸体的p次径向平均体的线性不变性和椭球的p次径向平均体仍是椭球,并且获得了p次径向平均体相应于Blaschke-Santaló不等式的一个反向不等式. This paper proves that the radial pth mean body is invariant under a general linear transformation and that the radial pth mean body of an ellipsoid is an ellipsoid. And corresponding to the Blaschke-Santald inequality, a reverse inequality for the radial pth mean body is given.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第3期617-622,共6页 数学研究与评论(英文版)
基金 国家自然科学基金(10271071)
关键词 P次径向平均体 凸体 径向函数 the radial pth mean body convex body radial function.
  • 相关文献

参考文献9

  • 1BLASCHKE W.(U)ber affine geometric Ⅶ:neue extremeigenschaften von ellipse und ellipsoid[J].Leipziger Berichte,1917,69:306-318.
  • 2GARDNER R J.The Brunn-Minkowski inequality[J].Bull.Amer.Math.Soc.,2002,39:355-405.
  • 3GARDNER R J.Geometric Tomography[M].Cambridge Univ.Press,New York,1995.
  • 4GARDNER R J,ZHANG Gao-yong.Affine inequalities and radial mean bodies[J].Amer.J.Math.,1998,120:505-528.
  • 5PETTY C M.Affine isoperimetric problems[J].Ann.N.Y.Acad.Sci.,1985,440:113-127.
  • 6SANTALO L A.Un invariante afin para los cuerpos convexos del espacio de n dimensiones[J].Portugal.Math.,1949,8:155-161.
  • 7SCHNEIDER R. Convex Bodies: the Brunn-Minkowski Theory [M]. Cambridge Univ. Press, Cambridge,1993.
  • 8WEIR A. Lebesgue Integration and Measure [M]. Cambridge Univ. Press, Cambridge, 1973.
  • 9ZHANG Gao-yong. Restricted chord projection and affine inequalities [J]. Geom. Dedicata, 1991, 39: 213-222.

同被引文献12

  • 1倪建华,熊革,CHEUNG Wing-sum.Radial mean bodies of simplices[J].Journal of Shanghai University(English Edition),2007,11(1):49-51. 被引量:2
  • 2石丹丹,陈业新,万晓景,LIU Chain Tsuan.Influence of boron-doping on the H2-induced environmental embrittlement of Ni3Fe intermetallics[J].Journal of Shanghai University(English Edition),2007,11(2):102-105. 被引量:4
  • 3GARDNER R J,ZHANG G Y.Affine inequalities and radial mean bodies[J].Amercian Journal of Mathematics,1998,120:505-528.
  • 4ZHANG G Y.Geromtric inequalities and inclusion measures of convex bodies[J].Mathematika,1994,41:95-116.
  • 5SCHNEIDER R.Convex bodies:the Brunn-Minkowski theory[M].Cambridge:Cambridge Umversity Press,1993.
  • 6ZHANG G Y.Restricted chord porjection and affine inequaalities[J].Geometirae Dedicata,1991,39:213-222
  • 7NI J H,XIONG G,CHEUNG W S.Radial mean bodies of simpliees[J].Journal of Shanghai University:English Edition,2007,11(1):49.51.
  • 8XIONG G,CHEUNG W S.Chord power integrals and radial mean bodies[J].J Math Anal Appl,2008,342:629-637.
  • 9GARDNER R J.Geometric tomography[M].New York:Cambridge University Press,2006.
  • 10LUTWAK E.Intersection bodies and dual mixed volumes[J].Advances in Mathematics,1988,71:232-261.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部