期刊文献+

一种新的空间曲线匹配算法 被引量:4

A Novel Algorithm on Space Curve Matching
下载PDF
导出
摘要 提出一种新的空间曲线匹配算法。该算法对离散的曲线进行光顺、拟合和采样,使用空间曲线微分几何性质计算各采样点的曲率和弗朗内特标架。通过曲率计算匹配点对列表,通过对齐匹配点对的弗朗内特标架进行曲线匹配,得到一个匹配矩阵集。从匹配矩阵集中选出一个最优匹配的匹配矩阵,使得空间曲线的对应点匹配窗口内的距离平方和最小。实验结果证明,算法效率高、鲁棒性好。 A novel space curve matching algorithm was presented. After smoothing, fitting and sampling the discrete space curves, the algorithm calculated Frenet frame and curvature for each sampiing point. The curvature was used to pair the sampling points. Then by registrating the Frenet frames for each pair, a set of match matrix was obtained. We selected the optimal match matrix from it, which minimized the corresponding point distance square sum within the match window. Experimental results demonstrate the algorithm is efficient and robust.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第16期1744-1747,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(60273097) 高等学校优秀青年教师教学科研奖励基金资助项目 南京航空航天大学创新科研基金资助项目(S0272-054)
关键词 空间曲线匹配 弗朗内特标架对齐 参数三次样条 匹配点对列表 匹配窗口 匹配矩阵 space curve matching Frenet frame registration parametric cubic spline match point pair list match window match matrix
  • 相关文献

参考文献9

  • 1Besl P J,McKay N D.A Method for Registration of 3-D Shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
  • 2朱延娟,周来水,王坚.CONTOUR EXTRACTION AND FEATURE POINT DETECTION FOR 3-D FRAGMENT REASSEMBLY[J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(1):23-29. 被引量:3
  • 3Ucoluk G,Toroslu I H.Reconstruction of 3-D Surface Object from Its Pieces[C]//Proc.of the 9th Canadian Conference on Computational Geometry.Kingston:Elsevier,1997:187-192.
  • 4Leitao H C C,Stolfi J.A Multiscale Method for the Reassembly of Two-Dimensional Fragmented Objects[J].IEEE Transactions and Pattern Analysis and Machine Intelligence,2002,24(9):1239-1251.
  • 5Kong Weixin,Kimia B B.On Solving 2D and 3D Puzzles Using Curve Matching[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Computer Society,2001:583-590.
  • 6Thomas B S,Philip N K,Kimia B B.On Aligning Curves[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(1):116-125.
  • 7Szilvsi-Nagy M,Matyasi G.Analysis of STL Files[J].Mathematical and Computer Modelling,2003,38(7/9),945-960.
  • 8Shin Hayong,Park J C,Choi B K,et al.Efficient Topology Construction from Triangle Soup[C]//Proc.of the Geometric Modeling and Processing.Beijing:IEEE Computer Society,2004:359-364.
  • 9Papaioannou G,Karabassi A E.On the Automatic Assemblage of Arbitrary Broken Solid Artifacts[J].Image and Vision Computing,2003,21(5):401-412.

共引文献2

同被引文献20

  • 1邹琼兵,周东翔,蔡宣平.基于边缘细化的角点提取算法[J].计算机应用与软件,2006,23(3):110-112. 被引量:8
  • 2张宏.布尔莎—沃尔夫转换模型的几何证明[J].测绘与空间地理信息,2006,29(2):46-47. 被引量:27
  • 3方晓胜,胡跃明,高红霞.BGA芯片的高速高精度视觉检测与定位算法[J].电子工艺技术,2006,27(5):262-264. 被引量:9
  • 4杜国红,徐克虎,杜涛.平面非规则曲线的一种快速识别与匹配算法[J].计算机工程与应用,2007,43(7):81-83. 被引量:4
  • 5Cohen S,Elber G,Yehuda R B.Matching of freeform curves[J]. Computer-Aided Design, 1997,29(5) :369-378.
  • 6Sebastian T B,Klein P N,Kimia B B.On aligning curves[J].IEEE Transactions on Pattern Recognition and Machine Intelligence, 2003,25( 1 ): 116-125.
  • 7Zhu Yan-juan,Zhou Lai-shui,Wang Jian.Contour extraction and feature point detection for 3D fragment reassembly[J].Transations of Nanjing University of Aeronautics & Astronautics,2005,22(1 ) : 23-29.
  • 8David M.Mount ANN programming manual[R].Department of Computer Science and Institute for Advanced Computer Studies,University of Maryland, 1998.
  • 9Bottema O,Roth B.Transactions on pattern analysis and machine intelligence[J].Theoretical Kinematics.New York:Dover Publications, 1990, 14(2) :239-256.
  • 10Pottmann H,Wallner J.Computational line geometry[M].[S.l.]:Springer- Verlag,2001.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部