期刊文献+

基于非单调逻辑的自适应BDI模型

An Adaptive BDI Model Based on the Non-Monotonic Logic
下载PDF
导出
摘要 由于Agent直接与现实世界发生交互作用,设计者难以事先预料所有可能出现的环境状况并一一规定恰当的处理方法,Agent往往不能产生恰当的行为,从而可能导致问题求解失败。本文结合BDI模型和非单调逻辑的优点,引入了可能信念概念和信念维护算子,表达了Agent和动态环境之间的互动关系;引入Agent价值概念和行为规划算子,表达了期望和意图之间的动态约束关系,很好地解决了Agent在非预期环境中的适应性问题。 Agents interact with the real world directly , so the designer cannot prospect all the prossibilities about environment and prescribe all the solutions, so the agents cannot produce correct actions. This will ultimately make the solution faiL In this article, we combine the BDI model' s and the non-monotonic logic' s merits, import the conception of possible belief and the operator of belief maintenance to express the interactions between the agents and the dynamic environment, import the conception of the agent value and the operator of action scheduling to express the dynamic restrictions between desire and belief, and solve the problem of the agents' adaptation in unexpected environment well.
出处 《计算机工程与科学》 CSCD 2006年第8期131-133,139,共4页 Computer Engineering & Science
关键词 BDI模型 非单调逻辑 信念 期望 意图 BDI model non-monotonic logic belief desire intention
  • 相关文献

参考文献7

  • 1N R Jennings. An Agent-Based Approach for Building Complex Software Systems[J]. Communications of the ACM,2001,44(4):35-41.
  • 2M P Georgeff,B Pell, M Pollack,et al. The Belief-Desire-Intention Model of Agency[A]. Proc of the 5th Int'l Workshop on Intelligent Agents V: Agent Theories, Architectures, and Languages (ATAL'98)[C]. 1999. 1-10.
  • 3A S Rao, M P Georgeff. Decision Procedures of BDI Logics[J]. Journal of Logic and Computation, 1998,8(3) :293-344.
  • 4J J C Meyer, W van der Hoek, B van Linder. A Logical Approach to the Dynamics of Commitments[J]. Artifical Intelligent, 1999,113(1-2) : 1-40.
  • 5M Georgeff, B Pell, M Pollack, et al. The Belief-Desire-Intention Model of Agency[A]. ATAL'98[C]. 1999. 1-10.
  • 6董明楷,蒋运承,史忠植.一种带缺省推理的描述逻辑[J].计算机学报,2003,26(6):729-736. 被引量:52
  • 7蔡自兴 等.人工智能及其应用[M].清华大学出版社,2002..

二级参考文献11

  • 1Baader F, et al. The Description Logic Handbook: Theory,Implementation and Applications. Cambridge: Cambridge University Press, 2002.
  • 2Brachman R J, Schmolze J G. An overview of the KL-ONE knowledge representation system. Cognitive Science, 1985, 9(2): 171-216.
  • 3Schmidt-Schauβ M, Smolka G. Attributive concept descriptions with complements. Artificial Intelligence, 1991, 48(1) : 1-26.
  • 4Reiter R. A logic for default reasoning. Artificial Intelligence,1980, 13(1): 81-132.
  • 5McCarthy J. Circumscription-A form of non-monotonic reasoning. Artificial Intelligence, 1980, 13(1): 27-39.
  • 6Brewka G. Nonmonotonic Reasoning- Logical Foundations of Commonsense. Cambridge: Cambridge University Press, 1991.
  • 7Baader F, Hullunder B. Embedding defaults into terminological representation systems. Journal of Automated Reasoning,1995, 14(1): 149-180.
  • 8Baader F, Hollunder B. Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. Journal of Automated Reasoning, 1995, 15(1): 41-68.
  • 9Haarslev V, Moeller R, Turhan A Y, Wessel M. On terminological default reasoning about spatial information: Extended abstract. In: Proceedings of the International Workshop on Description Logics (DL' 99), Linkoping, Sweden, 1999. 155-159.
  • 10Lambrix P, Shahmehri N, Wahlloef N. A default extension to description logics for use in an intelligent search engine. In:Proceedings of the 31st Hawaii International Conference on System Sciences, Volume V - Modeling Technologies and Intelligent Systems Track, Hawaii, 1998. 28-35.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部