期刊文献+

波浪作用下缆船拖带系统非线性运动数值模拟 被引量:6

Numerical simulation of nonlinear dynamic movement of towed cable-ship
下载PDF
导出
摘要 基于船舶操纵性运动方程和拖缆的三维动力学运动方程,提出了被拖点位置匹配的方法,建立了拖船—拖缆—被拖船系统整体非线性拖带动力学模型。为了考察被拖船航向稳定性与横向稳性的关系以及波浪载荷作用的影响,被拖船采用水平面四自由度运动方程,并引入了波浪的作用力和力矩。拖船采用PD控制方法较真实地模拟了拖船航向改变的运动过程。对一个拖船—拖缆—被拖船系统(5 000 t的拖船和3 000 t的被拖船)在时域内进行了规则波浪作用下拖带运动的模拟,计算结果表明被拖带船舶在波浪中运动呈现运动稳定、不稳定和临界状态3种可能的特性。根据模拟计算结果,认为波浪中拖带航向稳定是被拖带船舶保持稳性的必要条件。 Based on the equations governing the motion of the ship and three dimensions equations of the towed cable system, the nonlinear towing system dynamic model of the towing ship and towed ship connected with cable is established by matching both the positions of the towed point of ship and the end point of cable. For evaluating the relationship between course stability and transverse stability of the towed ship, the four degree equations of the towed ship is used in the towing system dynamic model, For the research on regular waves influence on the motions of the towed ship, the wave action force and moment on the ship is also introduced. The towing ship motion is simulated by steering rudder using control rule of PD, so the motion of towing ship under steering rudder is calculated tntly for simulation. For one towed system that includes one towing ship of 5 000 tons and one towed ship of 3 000 tons connected by towing cable, its motions are simulated by using the nonlinear towing system dynamic model established in this research. The motion characteristics of the towed ship shows three states: stable, instable and critical under regular wave simulation. From the results of the simulation, one can see that for keeping transverse stability of the towed ship, the course stability of the towed ship must be kept.
出处 《海洋工程》 CSCD 北大核心 2006年第3期56-62,共7页 The Ocean Engineering
关键词 拖曳系统 波浪 稳性 航向稳定性 边界条件 towed system waves transverse stability course stability boundary condition
  • 相关文献

参考文献4

二级参考文献16

  • 1廖世俊,顾云冠,朱继懋.6000m深海拖曳系统动力响应计算[J].海洋工程,1995,13(2):31-37. 被引量:9
  • 2Paidoussis P M. Dynamics of flexible slender cylinders in axial flow theory[J] .J. Fluid Mech, 1966,26:717 - 736.
  • 3Dowling A P. The dynamics of towed flexible cylinders[J]. J. Fluid Mech, 1988,187:507-571.
  • 4Ablow C M, Schechter S. Numerical simulation of undersea cable dynamics[J]. Ocean Engng., 1983,10(6): 443 -457.
  • 5Sanders J V. A three-dimensional dynamic analysis of a towed system[J]. Ocean Engng., 1982,9(5) :483 - 499.
  • 6Kennedy R M, Strahan E S. A linear theory of transverse cable dynamics at low frequencies[ R]. NUSC Tech. Bep. 6463, Naval Underwater Systems Center, Newport, Rhode Island/New London, Connecticut.
  • 7Nomoto M, Hattori M. A Deep ROV "DOLPHIN 3K": Design and Performance Analysis [J]. IEEE J. Oceanic Engineering 1986.11(3): 373~391.
  • 8De Zoysa A P K. Steady-state Analysis of Undersea Cables [J]. Ocean Engng, 1978,5(2): 209~223.
  • 9Ablow C M,Schechter S. Numerical simulation of undersea cable dynamics [J]. Ocean Engng, 1983,10(6): 443~457.
  • 10Srivastava S K, Ganapathy C. Experimental Investigations on Loop Manoeuvre of Underwater Towed Cable-Array System [J].Ocean Engng, 1998,25(1):85~102.

共引文献43

同被引文献39

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部