期刊文献+

随机动力学中FPK方程的径向基点插配点方法求解

Radial point collocation method(RPCM) for solving FPK equation in stochastic dynamics
下载PDF
导出
摘要 应用径向基点插配点方法对随机动力学中的FPK方程进行了求解。所求未知函数的空间插值采用径向基点插近似,而时间导数离散采用差分格式,建立具有带宽特性的代数方程,采用逐次超松弛迭代法(SOR)有效地求解所得到的代数方程。针对线性振子和杜芬振子问题的FPK方程进行了具体的数值求解,计算结果表明了方法的有效性,尤其是散点模型的计算结果表明该方法具有比其它有网格数值方法对非规则离散模型适应性更强的优点。 This paper applies radial point collocation method (RPCM) for solving FPK equations arising in nonlinear stochastic dynamics. The unknown function is approximated by radial point interpolation method in space discretization, and difference schemes are adopted in time discretization. The algebraic system equations with bandwidth character are built, and it is effectively solved by successive over-relaxation (SOR) method. The numerical results for the FPK equation of linear and Dulling oscillators demonstrate that a good accuracy can be obtained with both the uniform model and the scattered point model.
作者 刘欣
机构地区 浙江大学力学系
出处 《振动工程学报》 EI CSCD 北大核心 2006年第3期370-375,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(10572128)
关键词 随机动力学 FPK方程 径向基点插配点方法 薄板样条 无网格法 stochastic dynamics FPK equation radial point collocation method (RPCM) thin plate spline (TPS) meshfree
  • 相关文献

参考文献7

  • 1黄志龙.用差分法与超松弛迭代法求高维FPK方程的稳态解[A].中国计算力学大会'2003论文集:工程与科学中的计算力学(上)[C].165-171.
  • 2Spencer B F,Bergman L A.On the Numerical Solution of the Fokker-Planck Equation for Nonlinear Stochastic Systems[J].Nonlinear Dynamics,1993,4:357-372.
  • 3Liu G R.Mesh free Methods,Moving beyond the Finite Element Method[M].CRC Press,2002.
  • 4张雄,刘岩.无网格方法[M].北京:清华大学出版社,2003.
  • 5Liu X,Liu G R,Tai K,et al.Radial point interpolation collocation method for the solution of partial differential equations[J].Computers and Mathematics with Applications,2005,50:1 425-1 442.
  • 6Liu X,Liu G R,Tai K,et al.Radial point interpolation collocation method (RPICM) for the solution of nonlinear poisson problems[J].Computational Mechanics,2005,36(4):298-306.
  • 7Lee C K,Liu X,Fan S C.Local multiquadric approximation for solving boundary value problems[J].Computational Mechanics,2003,30:396-409.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部